精英家教网 > 高中数学 > 题目详情
16.设正方体ABCD-A1B1C1D1的棱长为2,则点A1到平面B1AC的距离是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{3}}{3}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点A1到平面B1AC的距离.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
A1(2,0,2),B1(2,2,2),A(2,0,0),C(0,2,0),
$\overrightarrow{A{B}_{1}}$=(0,2,2),$\overrightarrow{AC}$=(-2,2,0),$\overrightarrow{A{A}_{1}}$=(0,0,2),
设平面B1AC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
∴点A1到平面B1AC的距离:
d=$\frac{|\overrightarrow{A{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
∴点A1到平面B1AC的距离是$\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某高中男子体育小组的50m赛跑成绩(单位:s)如下:
4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0
设计一个程序从这些成绩中搜索出小于6.8s的成绩.并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,则函数y=f(f(x))-1的零点的个数是(  )
A.3B.4C.5D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A,B重合的动点.MN是圆O的一条直径,则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围是(  )
A.[-$\frac{3}{4}$,0)B.[-$\frac{3}{4}$,0]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn,问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.空间四边形ABCD的各棱长和对角线均为a,E,F分别是BC,AD的中点,则异面直线AE,CF所成角的余弦值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将圆周20等份,按照逆时针方向依次编号为1、2、…20,若从某一点开始,沿圆周逆时针方向行走,点的编号是数字几,就走几段弧长,称这种走法为一次“移位”,如:小明在编号为1的点,他应走1段弧长,即从1→2为第一次“移位”,这时他到达编号为2的点,然后从2→3→4为第二次“移位”,若某人从编号为3的点开始,沿逆时针方向,按上述“移位”方法行走,“移位”a次刚好到达编号为16的点,又满足|a-2016|的值最小,则a的值为(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是边长为4的菱形,∠BAD=60°,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{13}$,M,N分别为BC,PA的中点
(1)求证:BN∥平面PDM
(2)求平面PAB与平面PCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x|x≤a},B={1,2},A∩B=∅,则a的取值范围为(  )
A.(-∞,1)B.(1,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

同步练习册答案