精英家教网 > 高中数学 > 题目详情
18.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.则方程f(x)=g(x)在区间[-3,7]上的所有实数根之和最接近下列哪个数(  )
A.10B.8C.7D.6

分析 由f(x+2)=f(x),得到函数是周期为2的周期函数,分别作出函数f(x),g(x)在[-3,7]上的图象,利用图象观察交点的个数和规律,然后进行求解.

解答 解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,
∵g(x)=$\frac{1}{x-2}$,∴g(x)关于直线x=2对称.
分别作出函数f(x),g(x)在[-3,7]上的图象,
由图象可知两个函数的交点个数为6个,设6个交点的横坐标从小到大为x1,x2,x3,x4,x5,x6
且这6个交点接近点(2,0)对称,
则$\frac{1}{2}$(x1+x6)=2,x1+x6=4,
所以x1+x2+x3+x4+x5+x6=3(x1+x6)=3×4=12,
其中x=3时,不成立,则f(x)=g(x)在区间[-3,7]上的所有实根之和为12-3=9,
由图象可知,x1+x6>4,x2+x5>4,x4>1,
∴x1+x2+x4+x5+x6>9.
故选A.

点评 本题主要考查函数交点个数和取值的判断,利用数形结合是解决此类问题的基本方法.本题综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.规定一双筷子由同色的两支组成,现黑,白,黄筷子各8支,若不用眼睛看,任意地取出若干支筷子,要做到使被取出的筷子至少有一双同色,则至少应取出4只筷子.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是奇函数,且定义域为(-∞,0)∪(0,+∞).若x<0时,f(x)=lg$\frac{1-x}{2}$.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)对于函数f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直线y=$\frac{1}{2}$x+b能作为函数f(x)=sinx图象的切线吗?若能,求出切点坐标;若不能,简述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.抛物线C:y=x2在点P(x0,y0)处的切线l分别交x轴、y轴于不同的两点A、B.
(1)如果|AB|=$\sqrt{17}$,求点P的坐标:
(2)圆心E在y轴上的圆与直线l相切于点P,当|PE|=|PA|时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在长方体ABCD-A′B′C′D′中,P、R分别为BC、CC′上的动点,当点P,R满足什么条件时,PR∥平面AB′D′?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比λ;
(1)设圆C0:x2+y2=1,求过P(2,0)的直线关于圆C0的距离比λ=$\sqrt{3}$的直线方程;
(2)若圆C与y轴相切于点A(0,3),且直线y=x关于圆C的距离比λ=$\sqrt{2}$,求此圆C的方程;
(3)是否存在点P,使过P的任意两条互相垂直的直线分别关于相应两圆C1:(x+1)2+y2=1与C2:(x-3)2+(y-3)2=4的距离比始终相等?若存在,求出相应的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}的首项a1=1,公比为x(x>0),其前n项和为记为Sn,则函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$的解析式为$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是偶函数,且当x>0时,f(x)=x3+x+1,则当x<0时,f(x)的解析式为f(x)=-x3-x+1.

查看答案和解析>>

同步练习册答案