精英家教网 > 高中数学 > 题目详情
16.已知椭圆的中心在坐标原点,焦点在x轴上,且经过点(2,0)和点(0,1)
(1)求椭圆的标准方程;
(2)焦点为F1,F2,P为椭圆上的一点,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,求△F1PF2的面积.

分析 (1)根据题意得出椭圆的顶点坐标以及a、b的值,写出椭圆的标准方程即可;
(2)根据$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,得出$\overrightarrow{{PF}_{1}}$⊥$\overrightarrow{{PF}_{2}}$,利用勾股定理以及椭圆的定义求出|$\overrightarrow{{PF}_{1}}$|•|$\overrightarrow{{PF}_{2}}$|的值,即得△F1PF2的面积.

解答 解:(1)∵椭圆的中心在坐标原点,焦点在x轴上,且经过点(2,0)和点(0,1),
∴a=2,b=1,
∴椭圆的标准方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)焦点为F1,F2,P为椭圆上的一点,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴$\overrightarrow{{PF}_{1}}$⊥$\overrightarrow{{PF}_{2}}$,
∴${|\overrightarrow{{PF}_{1}}|}^{2}$+${|\overrightarrow{{PF}_{2}}|}^{2}$=(2c)2=${(2\sqrt{3})}^{2}$=12①;
又|$\overrightarrow{{PF}_{1}}$|+|$\overrightarrow{{PF}_{2}}$|=2a=4,
∴${|\overrightarrow{{PF}_{1}}|}^{2}$+2|$\overrightarrow{{PF}_{1}}$|•|$\overrightarrow{{PF}_{2}}$|+${|\overrightarrow{{PF}_{2}}|}^{2}$=16②;
由①、②得,|$\overrightarrow{{PF}_{1}}$|•|$\overrightarrow{{PF}_{2}}$|=2,
∴△F1PF2的面积为${S}_{{△F}_{1}{PF}_{2}}$=$\frac{1}{2}$|$\overrightarrow{{PF}_{1}}$|•|$\overrightarrow{{PF}_{2}}$|=1.

点评 本题主要考查了椭圆的定义与标准方程以及平面向量的数量积的应用问题,解题的关键是熟练掌握椭圆标准方程中a,b和c之间的关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设f(x)是一个函数.使得对所有整数x和y.都有f(x+y)=f(x)+f(y)+6xy+1和f(x)=f(-x).则f(4)等于(  )
A.26B.47C.52D.53

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={-2,-1,3,4},B={-1,0,3},则A∪B等于(  )
A.{-1,3}B.{-2,-1,0,3,4}C.{-2,-1,0,4}D.{-2,-1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ax3+5在R上是增函数,则实数a的取值范围为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数y=Asin(ωx+ϕ),(A>0,ω>0,0<ϕ<π)在一个周期内的图象如图所示.
(1)求该函数的解析式.
(2)当$x∈[-\frac{π}{2},\frac{π}{6}]$时,求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图可能是下列哪个函数的图象(  )
A.y=2x-x2-1B.y=$\frac{x}{lnx}$C.y=$\frac{{2}^{x}sinx}{{4}^{x}+1}$D.y=(x2-2x)ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=4,则△AOF的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在实数集R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x+1
(1)求f(x)与g(x)的解析式;
(2)求证:f(x)在区间[0,+∞)上单调递增;并求f(x)在区间[0,+∞)的反函数;
(3)设h(x)=x2+2mx+m2-m+1(其中m为常数),若h(g(x))≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=3tan(2x-$\frac{π}{4}$)
(1)求函数的最小正周期;
(2)求函数的定义域;
(3)说明此函数是由y=tanx的图象经过怎么样的变化得到的.

查看答案和解析>>

同步练习册答案