精英家教网 > 高中数学 > 题目详情

【题目】已知函数

处取极值在点处的切线方程

)当有唯一的零点求证

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】试题分析

本题考查导数的几何意义及导数在研究函数单调性、极值中的应用。根据函数在处取极值可得,然后根据导数的几何意义求得切线方程即可。)由 ,可得上单调递减,在上单调递增。结合函数的单调性和函数值可得上有唯一零点,设为,证明即可得结论。

试题解析

处取极值,

,解得.

,

,

.

在点处的切线方程为,

)由

,可得

上单调递减,在上单调递增。

,故当时,

,故上有唯一零点,设为

从而可知上单调递减,在上单调递增,

因为有唯一零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,设点,在中, ,周长为.

1)求椭圆的方程;

2)设不经过点的直线与椭圆相交于两点,若直线的斜率之和为,求证:直线过定点,并求出该定点的坐标;

3)记第(2)问所求的定点为,点为椭圆上的一个动点,试根据面积的不同取值范围,讨论存在的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4—4:坐标系与参数方程】

在直角坐标系中,直线的参数方程为 (为参数, 为直线的倾斜角). 以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同的长度单位,建立极坐标系. C的极坐标方程为,设直线l与圆C交于两点.

求角的取值范围;

(Ⅱ)若点的坐标为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中心在原点,焦点在轴上的椭圆的一个焦点为 是椭圆上的一个点.

(1)求椭圆的标准方程;

(2)设椭圆的上、下顶点分别为 )是椭圆上异于的任意一点, 轴, 为垂足, 为线段中点,直线交直线于点, 为线段的中点,如果的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且当时, ,设”.

(1)若为真,求实数的取值范围;

(2)设集合与集合的交集为,若为假, 为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知数列的前项和为, 的等差中项

)求的通项公式

)若数列项和为,且对,恒成立,求实数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 的距离之积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.

Ⅰ)求椭圆的方程;

Ⅱ)设过点的直线与椭圆相交于两点,关于原点的对称点为,若点总在以线段为直径的圆内,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求曲线在点处的切线方程

(Ⅱ)求证:

(Ⅲ)判断曲线是否位于轴下方,并说明理由.

查看答案和解析>>

同步练习册答案