【题目】已知函数.
(Ⅰ)若在处取极值,求在点处的切线方程;
(Ⅱ)当时,若有唯一的零点,求证:
科目:高中数学 来源: 题型:
【题目】已知椭圆()的左、右焦点分别为、,设点,在中, ,周长为.
(1)求椭圆的方程;
(2)设不经过点的直线与椭圆相交于、两点,若直线与的斜率之和为,求证:直线过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为,点为椭圆上的一个动点,试根据面积的不同取值范围,讨论存在的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4—4:坐标系与参数方程】
在直角坐标系中,直线的参数方程为 (为参数, 为直线的倾斜角). 以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同的长度单位,建立极坐标系. 圆C的极坐标方程为,设直线l与圆C交于两点.
(Ⅰ)求角的取值范围;
(Ⅱ)若点的坐标为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中心在原点,焦点在轴上的椭圆的一个焦点为, 是椭圆上的一个点.
(1)求椭圆的标准方程;
(2)设椭圆的上、下顶点分别为, ()是椭圆上异于的任意一点, 轴, 为垂足, 为线段中点,直线交直线于点, 为线段的中点,如果的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义域为的奇函数,且当时, ,设 “”.
(1)若为真,求实数的取值范围;
(2)设集合与集合的交集为,若为假, 为真,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系,已知曲线(为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为。
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于, 两点,求点到, 的距离之积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交于两点,点关于原点的对称点为,若点总在以线段为直径的圆内,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com