精英家教网 > 高中数学 > 题目详情

已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:根据互为反函数的两个函数之间的关系,即反函数的定义域是原函数的值域知,要求f(2),
只要在其反函数g(x)=log2x+1的解析式中,把g(x)换成2,求解x即可.
解答:由log2x+1=2得log2x=1,所以x=2,即f(2)=2,而g(2)=log22+1=2
所以f(2)+g(2)=2+2=4.
故选D.
点评:本题考查了函数及其反函数值的求法,考查了逆向思维,本题也可先求出f(x),因为两个函数互为反函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=数学公式是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.

(1)已知函数f(x)=2的反函数为f-1(x)=(x≥0),则由函数f(x)=2确定的数列{an}的反数列为{bn},求{bn}的通项公式;不等式++…+≥1-2a对任意的正整数n恒成立,求实数a的范围;

(2)设函数y=3x确定的数列为{cn},{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}的前n项和Sn.

查看答案和解析>>

同步练习册答案