精英家教网 > 高中数学 > 题目详情

【题目】已知正方体ABCD﹣A1B1C1D1 , 则下列说法不正确的是(
A.若点P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变
B.若点P是平面A1B1C1D1上到点D和C1距离相等的点,则P点的轨迹是过D1点的直线
C.若点P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变
D.若点P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变

【答案】C
【解析】解:∵点P是直线BC1的动点,
∴△AD1P的面积是定值,
∵点C到平面AD1P的距离不变,
∴A正确;
若点P是平面A1B1C1D1上到点D和C1距离相等的点,
则P点的轨迹是平面A1B1C1D1与平面A1BCD1的交线A1D1
∴B正确
∵随着P点的移动, 与平面ACD1的法向量的夹角也是变化的,
∴C错误;
∵平面PD1A平面ACD1的法向量的夹角是不变的,
∴D正确;
故选:C

【考点精析】解答此题的关键在于理解棱柱的结构特征的相关知识,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣(a2+1)x+alnx.
(Ⅰ)若函数f(x)在[ , e]上单调递减,求实数a的取值范围;
(Ⅱ)当a时,求f(x)在[1,2]上的最大值和最小值.(注意:ln2<0.7)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn(n∈N*),且满足an+2Sn=2n+2.
(1)求数列{an}的通项公式;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=.沿EF将梯形AFED折起,使得∠AFB=60°,如图.

(1)若G为FB的中点,求证:AG⊥平面BCEF;

(2)求二面角C-AB-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,直线AM,BM相交于点M,且这两条直线的斜率之积为.

(1)求点M的轨迹方程;

(2)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,过点P的斜率不为零且互为相反数的两条直线分别交曲线CQ,R(异于点P),求直线QR的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴非负半轴上,半径为2的圆C与直线相切.

(1)求圆C的方程;

(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
设函数f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案