精英家教网 > 高中数学 > 题目详情

已知双曲线的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则

[  ]

A.

B.

C.

D.的大小不确定

答案:B
解析:

分别作,由相似三角形的性质,得,又由双曲线的定义,故FR平分∠PFQ.故选B.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则此双曲线的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是x2=
4
3
y

②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的准线方程为y=-
1
4a

④已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0).
其中所有正确结论的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的右焦点为F(3,0),且以直线x=1为右准线.求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中所有正确命题的序号为
①②
①②

①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P(-2,3);
②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的焦点坐标为(
1
4a
,0
);
④曲线C:
x2
4-k
+
y2
k-1
=1
不可能表示椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的右焦点为F,过F作双曲线一条渐近线的垂线,垂足为A,过A作x轴的垂线,B为垂足,且
OF
=3
OB
(O为原点),则此双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案