精英家教网 > 高中数学 > 题目详情

【题目】直角三角形中,的中点,是线段上一个动点,且,如图所示,沿翻折至,使得平面平面

(1)当时,证明:平面

(2)是否存在,使得与平面所成的角的正弦值是?若存在,求出的值;若不存在,请说明理由.

【答案】(1)证明见解析;(2)答案见解析.

【解析】试题分析:

(1)由题意可得,取的中点,连接,当时,由几何关系可证得平面.则.利用线面垂直的判断定理可得平面.

(2)建立空间直角坐标系,结合直线的方向向量与平面的法向量计算可得存在,使得与平面所成的角的正弦值为.

试题解析:

(1)在中,,即

的中点,连接

时,的中点,而的中点,

的中位线,∴.

中,的中点,

的中点.

中,

,则.

又平面平面,平面平面

平面.

平面,∴.

,∴平面.

(2)以为原点,所在直线为轴,所在直线为轴,建立如图所示空间直角坐标系.

由(1)知中点,,而平面平面.

平面

.

假设存在满足题意的,则由.

可得

.

设平面的一个法向量为

,可得,即.

与平面所成的角的正弦值

.

解得舍去).

综上,存在,使得与平面所成的角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, ,等腰梯形中, ,且平面平面

(1)求证: 平面

(2)若与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调递增区间;

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构随机调查了岁到岁之间的位网上购物者的年龄分布情况,并将所得数据按照分成组,绘制成频率分布直方图(如图).

(1)求频率分布直方图中实数的值及这位网上购物者中年龄在内的人数;

(2)现采用分层抽样的方法从参与调查的位网上购物者中随机抽取人,再从这人中任选人,设这人中年龄在内的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆)的左焦点为,离心率为,过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)设点分别是椭圆的左、右顶点,若过点的直线与椭圆相交于不同两点

①求证:

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)

用时分组

频数

10

20

50

60

40

20

(1)用样本估计总体,求该市市民每天阅读用时的平均值;

(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着素质教育的不断推进,高考改革趋势明显.国家教育部先后出台了有关高考的《学业水平考试》、《综合素质评价》、《加分项目瘦身与自主招生》三个重磅文件,引起社会极大关注,有人说:男孩苦,女孩乐!为了了解某地区学生和包括老师,家长在内的社会人士对高考改革的看法,某媒体在该地区选择了人,,就是否“赞同改革”进行调查,调查统计的结果如下表:

赞同

不赞同

无所谓

在校学生

社会人士

已知在全体样本中随机抽取人,抽到持“不赞同”态度的人的概率为.

(1)现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,文应该在持“无所谓”态度的人中抽取多少人?

(2)在持“不赞同”态度的人中,用分层抽样方法抽取人,若从人中任抽人进一步深入调查,为更多了解学生的意愿,要求在校学生人数不少于社会人士人士,求恰好抽到两名在校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,平面.

(Ⅰ)求证:平面平面

(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考已知函数(其中为常数, 为自然对数的底数, ).

)若函数的极值点只有一个,求实数的取值范围;

)当时,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

同步练习册答案