【题目】直角三角形中,是的中点,是线段上一个动点,且,如图所示,沿将翻折至,使得平面平面.
(1)当时,证明:平面;
(2)是否存在,使得与平面所成的角的正弦值是?若存在,求出的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2)答案见解析.
【解析】试题分析:
(1)由题意可得,取的中点,连接交于,当时,由几何关系可证得平面.则.利用线面垂直的判断定理可得平面.
(2)建立空间直角坐标系,结合直线的方向向量与平面的法向量计算可得存在,使得与平面所成的角的正弦值为.
试题解析:
(1)在中,,即,
则,
取的中点,连接交于,
当时,是的中点,而是的中点,
∴是的中位线,∴.
在中,是的中点,
∴是的中点.
在中,,
∴,则.
又平面平面,平面平面,
∴平面.
又平面,∴.
而,∴平面.
(2)以为原点,所在直线为轴,所在直线为轴,建立如图所示空间直角坐标系.
则,,,,
由(1)知是中点,,而平面平面.
∴平面,
则.
假设存在满足题意的,则由.
可得,
则.
设平面的一个法向量为,
则即
令,可得,,即.
∴与平面所成的角的正弦值
.
解得(舍去).
综上,存在,使得与平面所成的角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某调查机构随机调查了岁到岁之间的位网上购物者的年龄分布情况,并将所得数据按照,,,,分成组,绘制成频率分布直方图(如图).
(1)求频率分布直方图中实数的值及这位网上购物者中年龄在内的人数;
(2)现采用分层抽样的方法从参与调查的位网上购物者中随机抽取人,再从这人中任选人,设这人中年龄在内的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.
(1)求椭圆的标准方程;
(2)设点分别是椭圆的左、右顶点,若过点的直线与椭圆相交于不同两点、.
①求证:;
②求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组 | ||||||
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来随着素质教育的不断推进,高考改革趋势明显.国家教育部先后出台了有关高考的《学业水平考试》、《综合素质评价》、《加分项目瘦身与自主招生》三个重磅文件,引起社会极大关注,有人说:男孩苦,女孩乐!为了了解某地区学生和包括老师,家长在内的社会人士对高考改革的看法,某媒体在该地区选择了人,,就是否“赞同改革”进行调查,调查统计的结果如下表:
赞同 | 不赞同 | 无所谓 | |
在校学生 | |||
社会人士 |
已知在全体样本中随机抽取人,抽到持“不赞同”态度的人的概率为.
(1)现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,文应该在持“无所谓”态度的人中抽取多少人?
(2)在持“不赞同”态度的人中,用分层抽样方法抽取人,若从人中任抽人进一步深入调查,为更多了解学生的意愿,要求在校学生人数不少于社会人士人士,求恰好抽到两名在校学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,,平面,.
(Ⅰ)求证:平面平面;
(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数(其中且为常数, 为自然对数的底数, ).
(Ⅰ)若函数的极值点只有一个,求实数的取值范围;
(Ⅱ)当时,若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com