精英家教网 > 高中数学 > 题目详情

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__.

【答案】

【解析】

设△BDC的中心为O1,球O的半径为R,连接oO1DODO1EOE,可得R23+3R2,解得R2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.

如图,

设△BDC的中心为O1,球O的半径为R

连接oO1DODO1EOE

AO1

RtOO1D中,R23+3R2,解得R2

BD3BE,∴DE2

在△DEO1中,O1E

过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,

此时截面圆的半径为,最小面积为

当截面过球心时,截面面积最大,最大面积为

故答案为:[2π4π]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数f(x)= 的图象上.若在矩形ABCD内随机取一点,则该点取自空白部分的概率等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件.今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为元/件,则新增的年销量(万件).

(Ⅰ)写出今年商户甲的收益(单位:万元)与的函数关系式;

(Ⅱ)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1,(a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+ =0)且不垂直于x轴直线l椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)求 取值范围;
(Ⅲ)若B关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是奇函数,则①一定是偶函数;②一定是偶函数;③;④.其中正确的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心均在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2 , 这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 , 则e1e2的取值范围为(
A.
B.
C.(2,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,则下列命题正确的是 . (填写所有正确命题的序号) ①若sinAsinB=2sin2C,则0<C<
②若a+b>2c,则0<C<
③若a4+b4=c4 . 则△ABC为锐角三角形;
④若(a+b)c<2ab,则C>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数上为增函数,求正实数的取值范围;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=+,其中a>0且a≠1。

(1)求函数的定义域;

(2)若函数有最小值而无最大值,求的单调增区间。

查看答案和解析>>

同步练习册答案