试题分析:由已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558853584.png)
的定义域均为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558884708.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558900977.png)
.
(Ⅰ)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115589151214.png)
,
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558931372.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558947565.png)
.所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558962442.png)
的单调增区间是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558806524.png)
. 3分
(Ⅱ)因
f(
x)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558993510.png)
上为减函数,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115590091027.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558993510.png)
上恒成立.
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559103628.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559134709.png)
.
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115591651390.png)
,
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559181546.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559181423.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559212798.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559212542.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559243461.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558728283.png)
的最小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558822303.png)
.
(Ⅲ)“若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558744707.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558759850.png)
成立”等价于
“当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559337552.png)
时,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559352936.png)
”,
有(Ⅱ),当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559337552.png)
时,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559399815.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559415845.png)
,
问题等价于:“当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559337552.png)
时,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559446743.png)
”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559477245.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559243461.png)
时,由(Ⅱ),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559508447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559539410.png)
上为减函数.
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115595551257.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558837702.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559711344.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559727538.png)
时,由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559742481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115598981096.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600101406.png)
上为增函数,
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559742481.png)
的值域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600132690.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600163533.png)
.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559742481.png)
的单调性和值域知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600195188.png)
唯一
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600210635.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600241610.png)
,且满足:
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600257583.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600273560.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559508447.png)
为减函数;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600304635.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600319570.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559508447.png)
为增函数;
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600366574.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600382999.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011600210635.png)
.
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240116004291253.png)
,与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011559727538.png)
矛盾,不合题意.
综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011558837702.png)
.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,同时考查不等式的证明,解题的关键是正确求导数,确定函数的单调性.