【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用配方、配方生产的产品的优质品率;
(2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.
【答案】(1),(2),元
【解析】
(1)根据某种产品的质量用其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,根据评论计算公式即可求得答案.
(2) 由条件知,用配方生产的一件产品的利润大于当且仅当其质量指标值,由试验结果知,质量指标值的频率为,用配方生产的一件产品的利润大于的概率约为,即可求得答案.
(1) 由试验结果知,用配方生产的产品中优质品的频率为
用配方生产的产品中优质品率的估计值为
由试验结果知,用配方生产的产品中优质品的频率为
用配方生产的产品中优质品率的估计值为
(2)由条件知,用配方生产的一件产品的利润大于当且仅当其质量指标值
由试验结果知,质量指标值的频率为.
用配方生产的一件产品的利润大于的概率约为.
用配方生产的件产品的平均利润为(元).
科目:高中数学 来源: 题型:
【题目】甲、乙、丙3人均以游戏的方式决定是否参加学校音乐社团、美术社团,游戏规则为:
①先将一个圆8等分(如图),再将8个等分点,分别标注在8个相同的小球上,并将这8个小球放入一个不透明的盒子里,每个人从盒内随机摸出两个小球、然后用摸出的两个小球上标注的分点与圆心构造三角形.若能构成直角三角形,则两个社团都参加;若能构成锐角三角形,则只参加美术社团;若能构成钝角三角形,则只参加音乐社团;若不能构成三角形,则两个社团都不参加.
②前一个同学摸出两个小球记录下结果后,把两个小球都放回盒内,下一位同学再从盒中随机摸取两个小球。
(1)求甲能参加音乐社团的概率;
(2)记甲、乙、丙3人能参加音乐社团的人数为随机变量,求的分布列、数学期望和方差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数 和的图象如图
给出下列四个命题:
①方程有且仅有个根;②方程有且仅有个根;
③方程有且仅有个根;④方程有且仅有个根;
其中正确命题的序号是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是甲、乙两名射击运动员在参赛前的训练中击中10环以上的次数统计,根据表格中的数据回答以下问题:
射击次数 | 10 | 20 | 50 | 100 | 200 | 500 |
甲击中10环以上的次数 | 9 | 17 | 44 | 92 | 179 | 450 |
甲击中10环以上的频率 |
射击次数 | 10 | 20 | 50 | 100 | 200 | 500 |
乙击中10环以上的次数 | 8 | 19 | 44 | 93 | 177 | 453 |
乙击中10环以上的频率 |
(1)分别计算出两位运动员击中10环以上的频率;
(2)根据(l)中的计算结果预测两位运动员在比赛时击中10环以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;
(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;
试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.
(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);
(2)试估计:①该县第一年养殖山羊多少万只?
②到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知小李每次打靶命中靶心的概率都为40%,现采用随机模拟的方法估计小李三次打靶恰有两次命中靶心的概率.先由计算器产生0到9之间取整数值的随机数,指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三个随机数为一组,代表三次打靶的结果,经随机模拟产生了如下20组随机数:
321 421 191 925 271 932 800 478
589 663 531 297 396 021 546 388
230 113 507 965
据此估计,小李三次打靶恰有两次命中的概率为( )
A. 0.25 B. 0.30
C. 0.35 D. 0.40
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com