精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣l|+|x﹣3|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.

【答案】
(1)解:函数f(x)=|x﹣l|+|x﹣3|= 的图象如图所示,

不等式f(x)≤6,即 ①或 ②,或 ③.

解①求得x∈,解②求得3<x≤5,解③求得﹣1≤x≤3.

综上可得,原不等式的解集为[﹣1,5].


(2)解:若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象

不能在y=ax﹣1的图象的下方.

如图所示:

由于图中两题射线的斜率分别为﹣2,2,点B(3,2),

∴3a﹣1≤2,且 a≥﹣2,求得﹣2≤a≤1.


【解析】(1)把不等式f(x)≤6等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得函数f(x)的图象不能在y=ax﹣1的图象的下方,数形结合求得a的范围.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)设函数,求函数的单调区间;

3)若对内任意一个,都有 成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C ,直线与抛物线C交于A,B两点.

1)若直线过抛物线C的焦点,求.

2)已知抛物线C上存在关于直线对称的相异两点MN,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1, ).过椭圆E内一点P(1, )的两条直线分别与椭圆交于点A、C和B、D,且满足 ,其中λ为实数.当直线AP平行于x轴时,对应的λ=

(1)求椭圆E的方程;
(2)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某机器人的运动轨道是边长为1米的正三角形ABC,开机后它从A点出发,沿轨道先逆时针运动再顺时针运动,每运动6米改变一次运动方向(假设按此方式无限运动下去),运动过程中随时记录逆时针运动的总路程s1和顺时针运动的总路程s2x为该机器人的运动状态参数,规定:逆时针运动时xs1,顺时针运动时x-s2,机器人到A点的距离dx满足函数关系dfx),现有如下结论:

fx)的值域为[01];

fx)是以3为周期的函数;

fx)是定义在R上的奇函数;

fx)在区间[-3,-2]上单调递增.

其中正确的有_________(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的n项和为Sn , 且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数,且满足,当时,,则内是( )

A. 单调增函数,且 B. 单调减函数,且

C. 单调增函数,且 D. 单调减函数,且

查看答案和解析>>

同步练习册答案