精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,短轴长为2,直线l与椭圆有且只有一个公共点.

1)求椭圆的方程;

2)是否存在以原点O为圆心的圆满足:此圆与直线l相交于PQ两点(两点均不在坐标轴上),且OPOQ的斜率之积为定值,若存在,求出此定值和圆的方程;若不存在,请说明理由.

【答案】12)存在;定值,圆

【解析】

1)首先根据题意列出方程组,再解方程组即可得到答案.

(2)首先假设存在符合条件的圆,并设此圆的方程为,分别讨论斜率存在和斜率不存在的情况,让直线和椭圆,直线与圆联立,利用韦达定理计算即可得到答案.

1)设椭圆的焦距为

由题意得:,解得.

所以椭圆的方程为

2)结论:存在符合条件的圆,此圆的方程为

直线的斜率之积为定值.

证明如下:假设存在符合条件的圆,并设此圆的方程为.

当直线的斜率存在时,设直线,设

,解得

因为直线l与椭圆有且只有一个公共点,

所以

所以

所以

所以

要使为定值(与无关),则,即.

所以当圆的方程为,圆与直线相交于两点,

直线的斜率之积为定值.

当直线的斜率不存在时,直线,此圆与直线相交于.

此时,满足

综上所述,存在满足条件的圆

此圆与直线相交于两点(两点均不在坐标轴上),

的斜率之积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的单调区间;

2)若方程在区间内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

1)如果函数的值域为,求b的值;

2)研究函数(常数)在定义域内的单调性,并说明理由;

3)对函数(常数)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数n是正整数)在区间上的最大值和最小值.(可利用你的研究结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,将沿对角线折起,使点到达点的位置,且平面平面.

1)求证:

2)若直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品金萱排骨茶,为了解每壶金萱排骨茶中所放茶叶量克与食客的满意率的关系,通过试验调查研究,发现可选择函数模型来拟合的关系,根据以下数据:

茶叶量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y关于x的回归方程为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品金萱排骨茶,为了解每壶金萱排骨茶中所放茶叶量克与食客的满意率的关系,通过试验调查研究,发现可选择函数模型来拟合的关系,根据以下数据:

茶叶量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y关于x的回归方程为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段AB的中点为,且AB两点到抛物线的焦点F的距离之和为8.


1)求抛物线的标准方程;

2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为TT只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:

T(分钟)

25

30

35

40

频数(次)

20

30

40

10

刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返月老校区共用时间不超过120分钟的概率.

查看答案和解析>>

同步练习册答案