精英家教网 > 高中数学 > 题目详情

【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCDAF∥DEDE=3AFBE与平面ABCD所成角为60°

)求证:AC⊥平面BDE

)求二面角F﹣BE﹣D的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:()因为DE平面ABCD,所以DEAC.因为ABCD是正方形,所以ACBD,从而AC平面BDE;()建立空间直角坐标系D-xyz,分别求出平面BEF的法向量为和平面BDE的法向量,利用向量法能求出二面角的余弦值

试题解析:(1)证明:因为DE⊥平面ABCDAC平面ABCD,所以DE⊥AC. 因为ABCD是正方形,所以AC⊥BD

BDDE相交且都在平面BDE内,从而AC⊥平面BDE

2)因为DADCDE两两垂直,所以建立空间直角坐标系Dxyz,如图所示.

因为DE平面ABCD,所以BE与平面ABCD所成角就是DBE.已知BE与平面ABCD所成角为60°,所以DBE60°,所以

AD3可知DE3AF

A300),F30),E003),B330),C030),

得=(0,-3),=(30,-2).设平面BEF的法向量为n=(xyz),

则即z,则n=(42).

因为AC⊥平面BDE,所以为平面BDE的法向量m=(3,-30),

所以cosnm〉=

因为二面角为锐角,所以二面角FBED的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃B点表示四月的平均最低气温约为5℃下面叙述不正确的是 ( )

A. 各月的平均最低气温都在0℃以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于20℃的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若的极值点的值

)若单调递增的取值范围

)当方程有实数根的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间分钟和销售量的关系作了统计,得到如下数据:

经计算: .

(1)从满足的数据中任取两个,求所得两个数据都满足的概率;

(2)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调增区间;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动圆与两个定圆均相切,其圆心的轨迹为曲线C.

(1) 求曲线C的方程;

(2) 过点F()做两条可相垂直的直线,设与曲线C交于A,B两点, 与曲线 C交于C,D两点,线段AC,BD分别与直线交于M,M,N两点。求证|MF|:|NF|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点直线交椭圆于点.

1求椭圆的标准方程;

2为等腰三角形,求点的坐标;

3,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab分别是△ABC内角AB的对边,且bsin2Aacos Asin B,函数f(x)sin Acos2xsin2sin 2xx.

(1)A

(2)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案