精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x),当x∈[1,2]时,f(x)<0且f(x)为增函数,给出下列四个结论:①f(x)在[-2,-1]上单调递增;②当x∈[-2,-1]时,有f(x)<0;③f(-x)在[-2,-1]上单调递减;④|f(x)|在[-2,-1]上单调递减.其中正确的结论是( )
A.①③
B.②③
C.②④
D.③④
【答案】分析:根据偶函数的图象关于y轴对称,结合已知函数的单调性,逐一加以研究.偶函数的图象关于y轴对称,x∈[1,2]时,f(x)为增函数,所以f(x)在[-2,-1]上单调递减;②x∈[1,2]时,f(x)<0,所以当x∈[-2,-1]时,有f(x)<0;③f(-x)=f(x).由①知f(x)在[-2,-1]上单调递减;④|f(x)|的图象是将f(x)下方的图象,翻折到x轴上方,由于f(x)在[-2,-1]上单调递减,所以|f(x)|在[-2,-1]上单调递增,故可得结论.
解答:解:①偶函数的图象关于y轴对称,x∈[1,2]时,f(x)为增函数,所以f(x)在[-2,-1]上单调递减,故①错误;
②偶函数的图象关于y轴对称,x∈[1,2]时,f(x)<0,所以当x∈[-2,-1]时,有f(x)<0,故②正确;
③∵函数f(x)是偶函数,∴f(-x)=f(x).由①知f(x)在[-2,-1]上单调递减,故③正确;
④|f(x)|的图象是将f(x)下方的图象,翻折到x轴上方,由于f(x)在[-2,-1]上单调递减,所以|f(x)|在[-2,-1]上单调递增,故④错误
综上可知,正确的结论是②③
故选B.
点评:本题以偶函数为载体,综合考查函数的奇偶性与单调性,考查偶函数图象的对称性,需要逐一验证,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案