精英家教网 > 高中数学 > 题目详情
已知点的坐标分别为.直线相交于点,且它们的斜率之积是,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;
(3)在(2)的条件下,记直线的交点为,试探究点与曲线的位置关系,并说明理由.
(1)();(2);(3)点在曲线上.

试题分析:本题主要考查椭圆的标准方程、点斜式求直线方程、中点坐标公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,设出P点坐标,利用斜率公式,求出直线AP、BP的斜率,计算得到曲线C的方程;第二问,设出Q点坐标,利用点斜式写出直线AQ的方程,它与x=4交于M,则联立得到M点坐标,同理得到N点坐标,利用中点坐标公式得到后,将Q点横坐标的范围代入直接得到所求范围;第三问,结合第二问得到直线AN和直线BM的方程,令2个方程联立,得到T点坐标,通过计算知T点坐标符合曲线C的方程,所以点T在曲线C上.
(1)设动点,则()
所以曲线的方程为().                 4分
(2)法一:设,则直线的方程为,令,则得,直线的方程为
,则得,          6分
=
,∴                 8分

∵ ,∴
∴,

∴直线与直线的斜率之积的取值范围为           10分
法二:设直线的斜率为,则由题可得直线的斜率为
所以直线的方程为,令,则得
直线的方程为,令,则得

                     8分

∴直线与直线的斜率之积的取值范围为           10分
(3)法一:由(2)得
则直线的方程为,直线的方程为, 12分
,解得     12分


∴ 点在曲线上.                            14分
法二:由(2)得
∴  ,        12分
 
∴ 点在曲线上.                       14分
法三:由(2)得,
∴  ,           12分
  ∴ 点在曲线上.         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点在抛物线的准线上,则该椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,两个焦点为.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆:的左顶点为,直线交椭圆两点(下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C过点,两焦点为是坐标原点,不经过原点的直线与该椭圆交于两个不同点,且直线的斜率依次成等比数列.
(1)求椭圆C的方程;       
(2)求直线的斜率
(3)求面积的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足三点的圆与直线相切.
(1)求椭圆C的方程;
(2)过右焦点作斜率为k的直线与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点为,若椭圆上存在一个点,满足以椭圆短轴为直径的圆与线段相切于该线段的中点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图F1.F2是椭圆: 与双曲线的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(    )

A.     B.       C.        D.

查看答案和解析>>

同步练习册答案