精英家教网 > 高中数学 > 题目详情

【题目】如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点AB在直径上,点CD在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗),

1)若要求圆柱体罐子的侧面积最大,应如何截取?

2)若要求圆柱体罐子的体积最大,应如何截取?

【答案】1)当截取的矩形铁皮的一边为时,圆柱体罐子的侧面积最大.

2)当截取的矩形铁皮的一边为时,圆柱体罐子的体积最大.

【解析】解:(1)如图,设圆心为O,连结,设

法一 易得 ,故所求矩形的面积为

(当且仅当 )时等号成立) 此时

法二 设 ; 则

所以矩形的面积为

,即时, )此时

(2)设圆柱的底面半径为,体积为,由得,

所以,其中

,此时, 上单调递增,在上单调递减, 故当 时,体积最大为

答:(1)当截取的矩形铁皮的一边 为时,圆柱体罐子的侧面积最大.

(2)当截取的矩形铁皮的一边 为时,圆柱体罐子的体积最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2 时,a2+b2的最小值为(
A.5
B.4
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,| |=2,| |=3,记| =3 ﹣2 =2 +k
(1)若 ,求实数k的值.
(2)是否存在实数k,使得 ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ) 部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)﹣cos2x,求函数g(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣ ,0),B( ,0),P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是﹣
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

同步练习册答案