精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

【答案】(Ⅰ);(2)见解析.

【解析】

(1)根据题目所给的条件得到解出参数值即可;(2)分别设出直线AMBM求出点B,D的坐标,并表示出AC,BD的长度,代入面积公式化简即可.

(Ⅰ)由已知可得:解得:

所以椭圆C的方程为:

(Ⅱ)因为椭圆C的方程为:,所以

,则,即

则直线BM的方程为:,令,得

同理:直线AM的方程为:,令,得

所以

即四边形ABCD的面积为定值2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】类比平面几何中的定理:△ABC中,若DE是△ABC的中位线,则有SADESABC14;若三棱锥ABCD有中截面EFG∥平面BCD,则截得三棱锥的体积与原三棱锥体积之间的关系式为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:

转速x(转/秒)

2

4

5

6

8

每小时生产有缺点的零件数y(件)

30

40

60

50

70

1)画散点图;

2)如果yx有线性相关关系,求回归直线方程;

3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+2﹣alnxbxa>0).

Ⅰ)若a=1,b=3,求函数yfx)在(1,f(1))处的切线方程;

Ⅱ)若fx1)=fx2)=0,且x1x2,证明:f′()>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:

每月完成合格产品的件数(单位:百件)

频数

10

45

35

6

4

男员工人数

7

23

18

1

1

(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?

非“生产能手”

“生产能手”

合计

男员工

女员工

合计

(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C的离心率为,且椭圆C过点.

1)求椭圆C的标准方程:

2)若直线l与椭圆C相交于AB两点(AB不是左右顶点),且以为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于回归分析的说法中错误的是( )

A. 回归直线一定过样本中心

B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适

C. 两个模型中残差平方和越小的模型拟合的效果越好

D. 甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示四棱锥P-ABCD平面,E为线段BD上的一点,且EB=ED=EC=BC,连接CE并延长交ADF

(1)若GPD的中点,求证:平面平面CGF

(2)若BC=2,PA=3,求平面BCP与平面DCP所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案