精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(
A.1个
B.2个
C.3个
D.4个

【答案】B
【解析】解:如图,不妨设导函数的零点从小到大分别为x1 , x2 , x3 , x4 . 由导函数的图象可知:
当x∈(a,x1)时,f′(x)>0,f(x)为增函数,
当x∈(x1 , x2)时,f′(x)<0,f(x)为减函数,
当x∈(x2 , x3)时,f′(x)>0,f(x)为增函数,
当x∈(x3 , x4)时,f′(x)>0,f(x)为增函数,
当x∈(x4 , b)时,f′(x)<0,f(x)为减函数,
由此可知,函数f(x)在开区间(a,b)内有两个极大值点,
是当x=x1 , x=x4时函数取得极大值.
故选B.
根据题目给出的导函数的图象,得到导函数在给定定义域内不同区间上的符号,由此判断出原函数在各个区间上的单调性,从而判断出函数取得极大值的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量
(1)若 垂直,求k的值;
(2)若 平行,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b﹣8)x﹣a﹣ab,当x∈(﹣3,2)时,f(x)>0,当x∈(﹣∞,﹣3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集为R,求c的取值范围;
(3)当x>﹣1时,求y= 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:

分组

频数

频率

[0,1)

10

b

[1,2)

20

0.20

[2,3)

a

0.30

[3,4)

20

0.20

[4,5)

10

0.10

[5,6]

10

0.10

合计

100

1.00


(1)求表中a和b的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下列程序框图运算,则输出的结果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)当时, 恒成立,求的取值范围;

(3)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若0<x< ,则2x与3sin x的大小关系(
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.与x的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1 , 求三棱锥E﹣ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案