精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=x2-1,那么f[f(x)]=(  )
A.x4-1B.x4+2x2C.x4+1D.x4-2x2

分析 根据已知中函数f(x)=x2-1,用x2-1替换x后,整理可得f[f(x)].

解答 解:∵f(x)=x2-1,
∴f[f(x)]=(x2-1)2-1=x4-2x2
故选:D

点评 本题考查的知识点是函数解析式的求解及常用方法,熟练掌握代入法,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若变量a,b满足约束条件$\left\{\begin{array}{l}{a≥1}\\{a{b}^{3}≥81}\\{{a}^{3}b≤81}\end{array}\right.$,求u=$\frac{{a}^{2}}{b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设P为y=x2+1上的一动点,A(0,-3),$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2=2px(p>0)的弦PQ的中点为(x0,y0)(y0≠0),则弦PQ的斜率是(  )
A.$\frac{p}{{y}_{0}}$B.-$\frac{p}{{y}_{0}}$C.px0D.-px0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)=x2+11x+7.则f(x+1)=(  )
A.x2-13x+19B.x2-13x+18C.x2+13x+19D.x2+13x+18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(sinα-2,-cosα),$\overrightarrow{n}$=(-sinα,cosα),其中α∈R.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α;
(2)若|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{2}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)tan405°-sin450°+cos750°;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)在[a,b]上有定义,且对任意x1,x2∈[a,b],有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{1}{2}[f({x_1})+f({x_2})]$,则称f(x)在[a,b]上具有性质P.设f(x)在[1,4]上具有性质P,现给出如下命题:
①f(x)在[1,4]上的图象是连续不断的;
②f(x2)在[1,2]上具有性质P;
③若f(x)在x=$\frac{5}{2}$处取得最大值1,则f(x)=1,x∈[1,4];
④对任意x1,x2,x3,x4∈[1,4],有$f(\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4})$≤$\frac{1}{4}[f({x_1})+f({x_2})+f({x_3})+f({x_4})]$.
其中正确命题的序号是(  )3O.
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在实数集R上的减函数,A(0,1),B(4,-1)是其图象上两点,那么|f(x)|<1的解集是(  )
A.(0,4)B.(-1,3)C.(-∞,0)∪(4,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步练习册答案