【题目】已知函数f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
①f(x)的最大值为3;
②将f(x)的图象向左平移 后所得的函数是偶函数;
③f(x)在区间[﹣ , ]上单调递增;
④f(x)的图象关于直线x= 对称.
其中正确说法的序号是( )
A.②③
B.①④
C.①②④
D.①③④
【答案】D
【解析】解:f(x)=2cos2ωx+ sin2ωx(ω>0),
=1+cos2ωx+ sin2ωx,
=2sin(2ωx+ )+1,
f(x)的最小正周期为π,根据周期公式可知:ω=1,
∴f(x)=2sin(2x+ )+1,
由正弦函数性质可知,f(x)的最大值为3,故①正确;
将f(x)的图象向左平移 后所得的函数为f(x)=2sin(2x+ )+1,不是偶函数,故②错误;
令2kπ﹣ ≤2x+ ≤2kπ+ ,解得:kπ﹣ ≤x≤kπ+ ,
∴x∈[kπ﹣ ,kπ+ ],f(x)单调递增,
∴f(x)在区间[﹣ , ]上单调递增,
故③正确;
令2x+ =kπ+ ,解得x= + ,f(x)的图象关于直线x= 对称,故④正确;
故答案选:D.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知F1、F2是椭圆C的左右焦点,点A,B为其左右顶点,P为椭圆C上(异于A、B)的一动点,当P点坐标为(1, )时,△PF1F2的面积为 ,分别过点A、B、P作椭圆C的切线l1 , l2 , l,直线l与l1 , l2分别交于点R,T.
(1)求椭圆C的方程;
(2)(i)求证:以RT为直径的圆过定点,并求出定点M的坐标;
(ii)求△RTM的面积最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: =1的离心率e= ,动点P在椭圆C上,点P到椭圆C的两个焦点的距离之和是4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C1的方程为 =1(m>n>0),椭圆C2的方程为 =λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知椭圆C2是椭圆C的3倍相似椭圆.若过椭圆C上动点P的切线l交椭圆C2于A,B两点,O为坐标原点,试证明当切线l变化时|PA|=|PB|并研究△OAB面积的变化情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过吨时,按每吨元收取;当该用户用水量超过吨时,超出部分按每吨元收取.
(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为元,且甲、乙两用户用水量之比为,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣ , ]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是( )
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣ , )
D.(﹣∞,﹣ ]∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(销售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求关于的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?
相关公式: , .
【答案】(1).(2)投入成本20万元的毛利率更大.
【解析】试题分析:(1)由回归公式,解得线性回归方程为;(2)当时, ,对应的毛利率为,当时, ,对应的毛利率为,故投入成本20万元的毛利率更大。
试题解析:
(1), ,
, ,故关于的线性回归方程为.
(2)当时, ,对应的毛利率为,
当时, ,对应的毛利率为,
故投入成本20万元的毛利率更大.
【题型】解答题
【结束】
21
【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD – A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.
(1)求异面直线EF与DG所成角的余弦值;
(2)设二面角A—BD—G的大小为θ,求 |cosθ| 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com