【题目】某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升血液中的含药量(微克)与服药的时间(小时)之间近似满足如图所示的曲线,其中是线段,曲线是函数(,,且,是常数)的图象.
(1)写出服药后关于的函数关系式;
(2)据测定,每毫升血液中的含药量不少于微克时治疗疾病有效.假设某人第一次服药为早上,为保持疗效,第二次服药最迟应当在当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后小时,该病人每毫升血液中的含药量为多少微克?(精确到微克)
科目:高中数学 来源: 题型:
【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设
(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知真命题:“函数的图象关于点成中心对称图形”的等价条件为“函数是奇函数”.
(1)将函数的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数图象对称中心的坐标;
(2)已知命题:“函数的图象关于某直线成轴对称图象”的等价条件为“存在实数a和b,使得函数是偶函数”.断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,,四边形为矩形,平面平面,.
(1)求证:平面⊥平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线l与圆相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com