精英家教网 > 高中数学 > 题目详情

【题目】体积为 的球有一个内接正三棱锥P﹣ABC,PQ是球的直径,∠APQ=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

【答案】C
【解析】解:由题意可得球O的半径为2,如图, 因为PQ是球的直径,所以∠PAQ=90°,∠APQ=60°,可得AP=2,
△ABC所在小圆圆心为O′,可由射影定理AP2=PO′PQ,所以PO′=1,AO′=
因为O′为△ABC的中心,所以可求出△ABC的边长为3,面积为
因此,三棱锥P﹣ABC的体积为V= =
故选:C.

【考点精析】本题主要考查了球内接多面体的相关知识点,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S= accosB.
(1)求角B的大小;
(2)若a=2 ,点D在AB的延长线上,且AD=3,cos∠ADC= ,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求f(x)≥f(4)的解集;
(2)设函数g(x)=k(x﹣3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣2cosθ﹣6sinθ+ =0,直线l的参数方程为 (t为参数).
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,点P的坐标为(3,3),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (e为自然对数的底数).
(1)当a=b=0时,直接写出f(x)的值域(不要求写出求解过程);
(2)若a= ,求函数f(x)的单调区间;
(3)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体积为 的球有一个内接正三棱锥P﹣ABC,PQ是球的直径,∠APQ=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中, ,则其前n项和Sn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E、F分别在A1B1、C1D1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形。

(1)(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(2)(Ⅱ)求直线AF与平面所成角的正弦值

查看答案和解析>>

同步练习册答案