精英家教网 > 高中数学 > 题目详情
已知F1、F2为椭圆
x2
25
+
y2
16
=1
的左、右焦点,若M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,则满足条件的点M有
(  )个.
A.0B.1C.2D.4
设△MF1F2的内切圆的内切圆的半径等于r,则由题意可得 2πr=3π,∴r=
3
2

由椭圆的定义可得  MF1 +MF2=2a=10,又 2c=6,
∴△MF1F2的面积等于
1
2
 ( MF1 +MF2+2c )r=8r=12.
又△MF1F2的面积等于
1
2
 2c yM=12,∴yM=4,故 M是椭圆的短轴顶点,故满足条件的点M有2个,
故选  C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=
3
2
,则椭圆的方程为(  )
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
3
=1
C、
x2
16
+
y2
4
=1
D、
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆E的两个左右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆与抛物线的一个交点,如果椭圆离心率e满足|PF1|=e|PF2|,则e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,点P是椭圆上的一个动点,则|PF1|•|PF2|的最小值是
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,B为椭圆短轴的一个端点,
BF1
BF2
1
2
F1F2
2
则椭圆的离心率的取值范围是
(0,
1
2
]
(0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知F1、F2为椭圆C:
x2
m+1
+
y2
m
=1的两个焦点,P为椭圆上的动点,则△F1PF2面积的最大值为2,则椭圆的离心率e为(  )

查看答案和解析>>

同步练习册答案