精英家教网 > 高中数学 > 题目详情
15.在平面直角坐标系中,若两点P、Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q两点关于直线y=x对称,则称点对{P,Q}是函数y=f(x)的一对“和谐点对”(注:点对{P,Q}与{Q,P}看做同一对“和谐点对”).函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,则此函数的“和谐点对”有2对.

分析 作出f(x)=log2x(x>0)关于直线y=x对称的图象C,判断C与函数f(x)=x2+3x+2(x≤0)的图象交点个数,可得答案.

解答 解:作出函数f(x)的图象,
然后作出f(x)=log2x(x>0)关于直线y=x对称的图象C,
如下图所示:
由C与函数f(x)=x2+3x+2(x≤0)的图象有2个不同交点,
所以函数的“和谐点对”有2对.
故答案为:2.

点评 本题考查的知识点是函数零点个数及判断,数形结合思想是解答本题的关键,而解答的核心在于将问题转化为函数图象的交点个数问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若角α满足cosα>0,tanα<0,则α为第四象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设$f(x)=\left\{\begin{array}{l}x,x∈({-∞,t})\\{x^3},x∈[{t,+∞}).\end{array}\right.$若f(3)=27,则t的取值范围为(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若点A(x1,y1)、B(x2,y2)同时满足一下两个条件:
(1)点A、B都在函数y=f(x)上;
(2)点A、B关于原点对称;
则称点对((x1,y1),(x2,y2))是函数f(x)的一个“姐妹点对”.
已知函数$f(x)=\left\{\begin{array}{l}x-4\;\;\;\;({x≥0})\\{x^2}-2x\;\;({x<0})\;\end{array}\right.$,则函数f(x)的“姐妹点对”是(1,-3),(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数$f(x)=\sqrt{x}$,$g(x)=x-\sqrt{x}$,则f(x)+g(x)=x,x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.(α$为参数),M是曲线C1上的动点,且M是线段OP的中点,P点的轨迹为曲线C2,直线l的极坐标方程为$ρsin({x+\frac{π}{4}})=\sqrt{2}$,直线l与曲线C2交于A,B两点.
(1)求曲线C2的普通方程;
(2)求线段 AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设不等式x2+ax+b≤0的解集为A=[m,n],不等式$\frac{{({x+2})({x+1})}}{x-1}>0$的解集为B,若A∪B=(-2,+∞),A∩B=(1,3],则m+n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若点(5,b)在两条平行直线$3x-4y+\frac{1}{2}=0$与6x+8y+10=0之间,则整数b的值为(  )
A.5B.-5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由直线y=x+2上的点P向圆C:(x-4)2+(y-2)2=1引切线PT(T为切点),当|PT|的值最小时,点P的坐标是(  )
A.(-1,1)B.(0,2)C.(-2,0)D.(1,3)

查看答案和解析>>

同步练习册答案