精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asinωx+Bcosωx(A、B、ω是实常数,ω>0)的最小正周期为2,并当x=
1
3
时,f(x)max=2.
(1)求f(x).
(2)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.
分析:(1)先根据最小正周期求出w的值,再由当x=
1
3
时,f(x)max=2和三角函数的性质可求出A,B的值,进而得到函数f(x)的解析式.
(2)令πx+
π
6
=kπ+
π
2
求出x的值,再根据x的范围确定k的范围,最后由k为整数可确定答案.
解答:解:(1)∵T=
w
=2
,∴w=π
A2+B2=4,Asin
π
3
+Bcos
π
3
=
3
2
A+
B
2
=2

∴A=
3
,B=2
∴f(x)=
3
sinπx+cosπx=2sin(πx+
π
6
).
(2)令πx+
π
6
=kπ+
π
2
,k∈Z.
∴x=k+
1
3
21
4
≤k+
1
3
23
4

59
12
≤k≤
65
12

∴k=5.
故在[
21
4
23
4
]上只有f(x)的一条对称轴x=
16
3
点评:本题主要考查三角函数的最小正周期的求法和对称轴的求法.三角函数的基础知识是解题的关键,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案