精英家教网 > 高中数学 > 题目详情
下列结论:
(1)?a,b∈(0,+∞),当a+b=1时,
1
a
+
1
b
=3

(2)f(x)=1g(x2+ax+1),定义域为R,则-2<a<2;
(3)x+y≠3是x≠1或y≠2成立的充分不必要条件;
(4)f(x)=
1+x
+
x+3
最大值与最小值的比为
2

其中正确结论的序号为______.
(1)因为a,b∈(0,+∞),所以
1
a
+
1
b
=(
1
a
+
1
b
)(a+b)=2+
b
a
+
a
b
≥2+2
a
b
×
b
a
=2+2
2
>3,所以(1)错误.
(2)要使f(x)=1g(x2+ax+1),定义域为R,则x2+ax+1>0恒成立,所以△=a2-4<0,解得-2<a<2,所以(2)正确.
(3)原命题等价为x=1且y=2是x+y=3的充分不必要条件.当x=1且y=2时,一定有x+y=3,当x=2,y=1时也满足x+y=3,所以x=1且y=2是x+y=3的充分不必要条件,即(3)正确.
(4)要使函数有意义,则
1+x≥0
x+3≥0
.即
x≥-1
x≥-3
,所以x≥-1.因为函数f(x)=
1+x
+
x+3
在[-1,+∞)上为单调递增函数,所以函数有最小值,但无最大值,所以(4)错误.
故正确结论的序号为(2)(3).
故答案为:(2)(3).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论:
(1)?a,b∈(0,+∞),当a+b=1时,
1
a
+
1
b
=3

(2)f(x)=1g(x2+ax+1),定义域为R,则-2<a<2;
(3)x+y≠3是x≠1或y≠2成立的充分不必要条件;
(4)f(x)=
1+x
+
x+3
最大值与最小值的比为
2

其中正确结论的序号为
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:
(1)
a
b
=
b
a

(2)(
a
b
)•
c
=
a
 •(
b
c
)

(3)
a
•(
b
+
c
)=
a
b
+
a
• 
c

(4)由
a
b
=
a
c
(
a
0
)
可得
b
=
c

以上通过类比得到的结论正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图③中直线AM与x轴交于点N(n,0),则m对应n,记作f(m)=n.给出下列结论:

(1)方程f(x)=0的解是x=
1
2
; 
(2)f(
1
4
)=1
; 
(3)f(x)是奇函数;
(4)f(x)在定义域上单调递增;   
(5)f(x)的图象关于点(
1
2
,0)
对称.
上述说法中正确命题的序号是
(1)(4)(5)
(1)(4)(5)
(填出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省厦门外国语学校高三(上)期中数学试卷(理科)(解析版) 题型:填空题

下列结论:
(1)?a,b∈(0,+∞),当a+b=1时,
(2)f(x)=1g(x2+ax+1),定义域为R,则-2<a<2;
(3)x+y≠3是x≠1或y≠2成立的充分不必要条件;
(4)f(x)=+最大值与最小值的比为
其中正确结论的序号为   

查看答案和解析>>

同步练习册答案