ÏÖ¶Ôij¸ßУ160ÃûÀºÇòÔ˶¯Ô±ÔÚ¶à´ÎѵÁ·±ÈÈüÖеĵ÷ֽøÐÐͳ¼Æ£¬½«Ã¿Î»Ô˶¯Ô±µÄƽ¾ù³É¼¨ËùµÃÊý¾ÝÓÃƵÂÊ·Ö²¼Ö±·½Í¼±íʾÈçÏ£®£¨È磺ÂäÔÚÇø¼ä[10£¬15£©ÄÚµÄƵÂÊ/×é¾àΪ0.0125£©¹æ¶¨·ÖÊýÔÚ[10£¬20£©¡¢[20£¬30£©¡¢[30£¬40£©ÉϵÄÔ˶¯Ô±·Ö±ðΪÈý¼¶ÀºÇòÔ˶¯Ô±¡¢¶þ¼¶ÀºÇòÔ˶¯Ô±¡¢Ò»¼¶ÀºÇòÔ˶¯Ô±£¬ÏÖ´ÓÕâÅúÀºÇòÔ˶¯Ô±ÖÐÀûÓ÷ֲã³éÑùµÄ·½·¨Ñ¡³ö16ÃûÔ˶¯Ô±×÷Ϊ¸Ã¸ßУµÄÀºÇòÔ˶¯Ô±´ú±í£®
£¨1£©ÇóaµÄÖµºÍÑ¡³öÀºÇòÔ˶¯Ô±´ú±íÖÐÒ»¼¶Ô˶¯Ô±µÄÈËÊý£»
£¨2£©Èô´ÓÀºÇòÔ˶¯Ô±´ú±íÖÐÒÀ´ÎÑ¡ÈýÈË£¬ÇóÆäÖк¬ÓÐÒ»¼¶Ô˶¯Ô±ÈËÊýXµÄ·Ö²¼ÁУ»
£¨3£©Èô´Ó¸ÃУÀºÇòÔ˶¯Ô±ÖÐÓзŻصØÑ¡ÈýÈË£¬ÇóÆäÖк¬ÓÐÒ»¼¶Ô˶¯Ô±ÈËÊýYµÄÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,ƵÂÊ·Ö²¼Ö±·½Í¼
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©ÀûÓÃƵÂÊ·Ö²¼Ö±·½Í¼ÄÜÇó³öaµÄÖµºÍÑ¡³öÀºÇòÔ˶¯Ô±´ú±íÖÐÒ»¼¶Ô˶¯Ô±µÄÈËÊý£®
£¨2£©ÓÉÒÑÖª¿ÉµÃXµÄ¿ÉÄÜÈ¡Öµ·Ö±ðΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏà¶ÔÓ¦µÄ¸ÅÂÊ£¬ÄÜÇó³öXµÄ·Ö²¼ÁУ®
£¨3£©ÓÉÒÑÖªµÃY¡«B£¨3£¬
1
4
£©£¬ÓÉ´ËÄÜÇó³öÇ¡ÓÐÒ»¼¶Ô˶¯Ô±ÈËÊýYµÄÆÚÍû£®
½â´ð£º ½â£º£¨1£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼Öª£º
£¨0.0625+0.0500+0.0375+a+2¡Á0.0125£©¡Á5=1£¬
½âµÃa=0.0250£®¡­£¨2·Ö£©
ÆäÖÐΪһ¼¶Ô˶¯Ô±µÄ¸ÅÂÊΪ£¨0.0125+0.0375£©¡Á5=0.25£¬
¡àÑ¡³öÀºÇòÔ˶¯Ô±´ú±íÖÐÒ»¼¶Ô˶¯Ô±Îª0.25¡Á16=4£¨ÈË£©£®¡­£¨4·Ö£©
£¨2£©ÓÉÒÑÖª¿ÉµÃXµÄ¿ÉÄÜÈ¡Öµ·Ö±ðΪ0£¬1£¬2£¬3£¬¡­£¨5·Ö£©
P£¨X=0£©=
C
3
12
C
3
16
=
11
28
£¬
P£¨X=1£©=
C
2
12
•C
1
4
C
3
16
=
33
70
£¬
P£¨X=2£©=
C
1
12
C
2
4
C
3
16
=
9
70
£¬
P£¨X=3£©=
C
3
4
C
3
16
=
1
140
£¬¡­£¨7·Ö£©
¡àXµÄ·Ö²¼ÁÐΪ£º
 X  0  2
 P
11
28
 
 
33
70
9
70
 
 
1
140
¡­£¨8·Ö£©
£¨3£©ÓÉÒÑÖªµÃY¡«B£¨3£¬
1
4
£©£¬
¡àE£¨Y£©=np=3¡Á
1
4
=
3
4
£®¡­£¨10·Ö£©
¡àÇ¡ÓÐÒ»¼¶Ô˶¯Ô±ÈËÊýYµÄÆÚÍûΪ
3
4
ÈË£®¡­£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâƵÂÊ·Ö²¼Ö±·½Í¼µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬´Ó¸ßΪhµÄÆøÇò£¨A£©ÉϲâÁ¿ÌúÇÅ£¨BC£©µÄ³¤£¬Èç¹û²âµÃÇÅÍ·BµÄ¸©½ÇÊǦÁ£¬ÇÅÍ·CµÄ¸©½ÇÊǦ£¬Ôò¸ÃÇŵij¤¿É±íʾΪ£¨¡¡¡¡£©
A¡¢
sin(¦Á-¦Â)
sin¦Ásin¦Â
•h
B¡¢
sin(¦Á-¦Â)
cos¦Ásin¦Â
•h
C¡¢
sin(¦Á-¦Â)
cos¦Ácos¦Â
•h
D¡¢
cos(¦Á-¦Â)
cos¦Ácos¦Â
•h

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÕýÏîÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐ4Sn-an2-4n+1=0ÇÒa2£¾2£¾a1£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=
an+1
2
£¬ÇóÖ¤£º
b1
b2
+
b1b3
b2b4
+¡­+
b1b3¡­b2n-1
b2b4¡­b2n
£¼
2n+1
-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=cos¦Øx•sin¦Øx+
3
cos2¦Øx-
3
2
£¨0£¼¦Ø¡Ü1£©£¬ÇÒÂú×ãf£¨x+¦Ð£©=f£¨x£©
£¨¢ñ£©Çóy=f£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Çóµ±x¡Ê[-
¦Ð
12
£¬
5¦Ð
12
]ʱ£¬y=f£¨x£©µÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èô¹ØÓÚxµÄ·½³Ì3[f£¨x£©]2+m•f£¨x£©-1=0ÔÚx¡Ê[-
¦Ð
12
£¬
5¦Ð
12
]ʱÓÐÈý¸ö²»ÏàµÈʵ¸ù£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©»¯¼ò£º
tan(¦Ð-¦Á)•sin(
¦Ð
2
+¦Á)•cos(2¦Ð-¦Á)
cos(-¦Ð-¦Á)•tan(¦Á-2¦Ð)

£¨2£©Éè
a
=£¨1£¬0£©£¬
b
=£¨1£¬1£©£¬ÈôÏòÁ¿¦Ë
a
+
b
ÓëÏòÁ¿
c
=£¨6£¬2£©¹²Ïߣ¬ÇóʵÊý¦Ë£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=n2an£¨n¡Ý2£©£¬ÇÒa1=1
¢Ù¼ÆËãa2£¬a3£¬a4£¬a5£»
¢Ú²ÂÏëan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²O£ºx2+y2=1ºÍµãM£¨1£¬4£©£®
£¨1£©¹ýµãMÏòÔ²OÒýÇÐÏߣ¬ÇóÇÐÏߵķ½³Ì£»
£¨2£©ÇóÒÔµãMΪԲÐÄ£¬ÇÒ±»Ö±Ïßy=2x-8½ØµÃµÄÏÒ³¤Îª8µÄÔ²MµÄ·½³Ì£»
£¨3£©ÉèPΪ£¨2£©ÖÐÔ²MÉÏÈÎÒâÒ»µã£¬¹ýµãPÏòÔ²OÒýÇÐÏߣ¬ÇеãΪQ£¬ÊÔ̽¾¿£ºÆ½ÃæÄÚÊÇ·ñ´æÔÚÒ»¶¨µãR£¬Ê¹µÃ
PQ
PR
Ϊ¶¨Öµ£¿Èô´æÔÚ£¬ÇëÇó³ö¶¨µãRµÄ×ø±ê£¬²¢Ö¸³öÏàÓ¦µÄ¶¨Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=-an-£¨
1
2
£©n-1+2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}Âú×ãbn=2n•an
£¨1£©Çóa1
£¨2£©ÇóÖ¤ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éècn=log2
n
an
£¬ÊýÁÐ{
2
cncn+2
}µÄÇ°nÏîºÍΪTn£¬ÇóÂú×ãTn£¼
25
21
£¨n¡ÊN*£©µÄnµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
1-a
2
x2+ax-lnx£¨a¡ÊR£©
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©µ±a¡Ý2ʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©Èô¶ÔÈÎÒâa¡Ê£¨2£¬3£©¼°ÈÎÒâx1£¬x2¡Ê[1£¬2]£¬ºãÓÐma+ln2£¾|f£¨x1£©-f£¨x2£©|³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸