【题目】已知定义在上的数满足,当时.若关于的方程有三个不相等的实数根,则实数的取值范围是( )
A.B.
C.D.
【答案】D
【解析】
根据f(2﹣x)=f(2+x)可知函数f(x)关于x=2对称,利用当时,画出函数y=f(x)的大致图象.由题意转化为y=k(x﹣2)+e﹣1与f(x)有三个交点,直线恒过定点(2,e﹣1),再根据数形结合法可得k的取值范围.
由题意,当x≤2时,f(x)=(x﹣1)ex﹣1.f′(x)=xex.
①令f′(x)=0,解得x=0;②令f′(x)<0,解得x<0;③令f′(x)>0,解得0<x≤2.
∴f(x)在(﹣∞,0)上单调递减,在(0,2]上单调递增,
在x=0处取得极小值f(0)=﹣2.且f(1)=﹣1;x→﹣∞,f(x)→0.
又∵函数f(x)在R上满足f(2﹣x)=f(2+x),∴函数f(x)的图象关于x=2对称.
∴函数y=f(x)的大致图象如图所示:
关于x的方程f(x)﹣kx+2k﹣e+1=0可转化为f(x)=k(x﹣2)+e﹣1.
而一次函数y=k(x﹣2)+e﹣1很明显是恒过定点(2,e﹣1).结合图象,当k=0时,有两个交点,不符合题意,
当k=e时,有两个交点,其中一个是(1,﹣1).此时y=f(x)与y=k(x﹣2)+e﹣1正好相切.
∴当0<k<e时,有三个交点.同理可得当﹣e<k<0时,也有三个交点.
实数k的取值范围为:(﹣e,0)∪(0,e).
故选:D.
科目:高中数学 来源: 题型:
【题目】为了解某市公益志愿者的年龄分布情况,有关部门通过随机抽样,得到如图1的频率分布直方图.
(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间点处,丙船在最后面的点处,且.一架无人机在空中的点处对它们进行数据测量,在同一时刻测得, .(船只与无人机的大小及其它因素忽略不计)
(1)求此时无人机到甲、丙两船的距离之比;
(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求的分布列及数学期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过小时 | 不超过小时 | |
男 | ||
女 |
(1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?
(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数是( ).
①在中,若,则是等腰三角形;
②在中,若 ,则
③两个向量,共线的充要条件是存在实数,使
④等差数列的前项和公式是常数项为0的二次函数.
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com