精英家教网 > 高中数学 > 题目详情
若椭圆 
x2
5
+
y2
m
=1
(0<m<5)和双曲线
x2
3
-
y2
n
=1
(n>0)有相同的焦点,F1、F2,P是两条曲线的一个交点,且PF1⊥PF2,求△PF1F2的面积.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:设|PF1|=x,|PF2|=y,由对称性不妨设|PF1|>|PF2|,由椭圆定义和双曲线定义推导出x=
5
+
3
,y=
5
-
3
,由PF1⊥PF2,能求出△PF1F2的面积.
解答: 解:∵椭圆 
x2
5
+
y2
m
=1
(0<m<5)和
双曲线
x2
3
-
y2
n
=1
(n>0)有相同的焦点F1、F2
P是两条曲线的一个交点,
设|PF1|=x,|PF2|=y,
由对称性不妨设|PF1|>|PF2|
∴由椭圆定义得x+y=2
5
,由双曲线定义得x-y=2
3

解得x=
5
+
3
,y=
5
-
3

∵PF1⊥PF2
∴△PF1F2的面积S △PF1F2=
1
2
xy=
1
2
×(
5
+
3
)(
5
-
3
)
=1.
∴△PF1F2的面积是1.
点评:本题考查三角形的面积的求法,是中档题,解题时要认真审题,要熟练掌握双曲线、椭圆的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y=
1
x
的定义域是{x|x>2},则它的值域是{y|y≤
1
2
}

③若函数y=x2的值域是{y|0≤y≤4},则它的定义域是{x|-2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|x≤8};
你认为其中不正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列语句:
①二次函数是偶函数吗?
②2>2;
sin
π
2
=1

④x2-4x+4=0.
其中是命题的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),设左顶点为A,上顶点为B,且
OF
FB
=
AB
BF
,如图.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若F(1,0),过F的直线l交椭圆于M,N两点,试确定
FM
FN
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),离心率为
2
2
,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2y02为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线E:y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求P的值.
(3)在(2)的条件下,过点F2作任意直线l与抛物线E相交于点A、B两点,则直线AF1与直线BF1的斜率之和是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
6
3
,右焦点F到直线
x
a
+
y
b
=0
的距离为1.
(Ⅰ)求椭圆方程;
(Ⅱ)已知点M,N为椭圆的长轴的两个端点,作不平行于坐标轴的割线AB,若满足∠AFM=∠BFN,求证:割线AB恒经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l1:y=2x与直线l2:x+y=6交于P点.
(1)当直线m过P点且与直线l0:x-2y=0垂直时,求直线m的方程;
(2)当直线m过P点且坐标原点O到直线m的距离为2时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆E外一点A作一条直线与圆E交于B,C两点,且AB=
1
3
AC
,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

同步练习册答案