精英家教网 > 高中数学 > 题目详情
2.若直线l经过点$A(1,\sqrt{3})$和B(1,0),则直线l的倾斜角为(  )
A.B.60°C.90°D.不存在

分析 由于AB⊥x轴,可得倾斜角α=90°.

解答 解:设直线l的倾斜角为α,α∈[0°,180°),
∵AB⊥x轴,
∴α=90°.
故选:C.

点评 本题考查了垂直于x轴的直线的倾斜角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知等比数{an}的前n项和Sn,a1=1,S6=9S3
(Ⅰ){an}的通项公式;
(Ⅱ)若数{bn}满足a1b1+a2b2+…+anbn=(n-1)×2n+1,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=1+3x-x3的极大值是3,极小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,角A,B,C所对的边长分别为a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,则△ABC的面积为(  )
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{x-1,0<x≤2}\\{-1,-2≤x≤0}\end{array}\right.$,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知抛物线C:x2=2py(0<p<4),其上一点M(4,y0)到其焦点F的距离为5,过焦点F的直线l与抛物线C交于A,B左、右两点.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)若$\overrightarrow{AF}=\frac{1}{2}\overrightarrow{FB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|lnx|,$g(x)=\left\{{\begin{array}{l}{0,0<x≤1}\\{\frac{1}{8}|{{x^2}-9}|,x>1}\end{array}}\right.$,则方程f(x)-g(x)-1=0实根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求证:平面SBD⊥平面SAC;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案