【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:
甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;
(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
甲校 | 乙校 | 总计 | |
优秀 | |||
不优秀 | |||
总计 |
参考数据 | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1) .
(2)列联表见解析;在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关.
【解析】分析:(1)根据频率和为,求得的值,再计算乙校成绩优秀的学生数,利用列举法求出从乙校成绩优秀的学生中任选两名的基本事件的总数为,两名学生的成绩恰有一个落在内的基本事件的个数为,利用古典概型概率公式可得结果. (2)根据列联表中数据,利用公式求得,从而可得结果.
详解:(1)∵频率分布直方图中矩形面积为1
成绩落在内的人数为
成绩落在内的人数为
从乙校成绩优秀的学生中任选两名的基本事件的总数为
两名学生的成绩恰有一个落在内的基本事件的个数为
则这两名学生的成绩恰有一个落在内的概率为:
(2)由已知得列联表如下
甲校 | 乙校 | 总计 | |
优秀 | 11 | 5 | 16 |
不优秀 | 9 | 15 | 24 |
总计 | 20 | 20 | 40 |
所以在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关.
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.
(分钟) | 15 | 20 | 25 | 30 |
频数(次) | 50 | 50 | 60 | 40 |
(Ⅰ)求小王上班在路上所用时间的数学期望;
(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,求函数的单调递增区间;
(2)对于,为任意实数,关于的方程恰好有两个不等实根,求实数的值;
(3)在(2)的条件下,若不等式在恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足 .
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= ,且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3(1﹣Sn+1),若 + +…+ = ,求n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com