精英家教网 > 高中数学 > 题目详情
3.已知直线l1:x+my+6=0和直线l2:(m-2)x+3y+2m=0,试分别求实数m的值.
(1)l1⊥l2
(2)l1∥l2
(3)l1与l2重合;
(4)相交.

分析 (1)对m分类讨论,利用两条直线互相垂直的充要条件即可得出.
(2)由l1∥l2,可得$\frac{m-2}{1}=\frac{3}{m}≠\frac{2m}{6}$,(m≠0),解得m即可.
(3)l1与l2重合,则$\frac{m-2}{1}=\frac{3}{m}=\frac{2m}{6}$,解得m.
(4)m=0时,两条直线分别化为:x+6=0,-2x+3y=0,此时两条直线相交.m≠0时,由$-\frac{1}{m}$≠$-\frac{m-2}{3}$,解得m即可得出.

解答 解:(1)m=0时,两条直线不垂直,舍去.
m≠0,l1⊥l2,$-\frac{1}{m}$•$(-\frac{m-2}{3})$=-1,解得m=$\frac{1}{2}$.
(2)∵l1∥l2,∴$\frac{m-2}{1}=\frac{3}{m}≠\frac{2m}{6}$,(m≠0),解得m=-1.
(3)l1与l2重合,则$\frac{m-2}{1}=\frac{3}{m}=\frac{2m}{6}$,解得m=3.
(4)m=0时,两条直线分别化为:x+6=0,-2x+3y=0,此时两条直线相交.
m≠0时,由$-\frac{1}{m}$≠$-\frac{m-2}{3}$,解得m≠3,-1.
则m≠3,-1时两条直线相交.

点评 本题考查了两条直线相互平行、互相垂直及其相交的充要条件、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.截距相等的直线都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示
B.方程x+my-2=0(m∈R)不能表示平行y轴的直线
C.经过点P(1,1),倾斜角为θ的直线方程为y-1=tanθ(x-1)
D.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线方程为$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=\frac{{{x^2}+1}}{ax+b}$是奇函数,且满足f(1)=2.
(Ⅰ)求实数a,b,并确定函数f(x)的解析式;
(Ⅱ)用定义证明f(x)在[1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=log2$\frac{1}{8}$,c=$\sqrt{2}$,则(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.分别求出下列曲线的方程:
(1)椭圆的两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10,求椭圆的标准方程.
(2)双曲线C经过点(2,2),且与$\frac{{y}^{2}}{4}$-x2=1具有相同的渐近线,求双曲线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,点F2到直线x+$\sqrt{3}$y=0的距离为$\frac{1}{2}$,若点P在椭圆E上,△F1PF2的周长为6.
(1)求椭圆E的方程;
(2)若过F1的直线l与椭圆E交于不同的两点M,N,求△F2MN的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列$\sqrt{3},3,\sqrt{15},…,\sqrt{3(2n-1)},…$,那么9是此数列的第(  )项.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=2$\sqrt{3}$,则由该三棱锥的表面积为6$\sqrt{3}$.

查看答案和解析>>

同步练习册答案