精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

【答案】(1) (2)

【解析】试题分析:(Ⅰ)由题意,根据伸缩公式可求得曲线的普通方程,再普通方程与参数方程的互换公式进行转换,从而求出曲线的参数方程,同理可根据互换公式,将曲线的极坐标方程转化为参数方程.

(Ⅱ)由(Ⅰ)知曲线是以点为圆心,半径的圆,则可任取曲线上的点,由两点间的距离公式,求出点到圆心的距离,从而求出,从而问题可得解.

试题解析:(Ⅰ)曲线 经过伸缩变换,可得曲线的方程为

∴其参数方程为为参数);

曲线的极坐标方程为,即

∴曲线的直角坐标方程为,即

∴其参数方程为为参数).

(Ⅱ)设,则到曲线的圆心的距离

,∴当时, .

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在%~%时记为区间

(I)求上述数据中空气相对湿度使病毒死亡较快的频率;

(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=A cos(ωxφ)(A>0,ω>0)的部分图象如图所示,下面结论错误的是(  )

A. 函数f(x)的最小正周期为

B. 函数f(x)的图象可由g(x)=Acos ωx的图象向右平移个单位长度得到

C. 函数f(x)的图象关于直线x对称

D. 函数f(x)在区间上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足条件:①存在互异的使得为常数);

②当时,对任意都有,则称数列为双底数列.

(1)判断以下数列是否为双底数列(只需写出结论不必证明);

; ②; ③

(2)设若数列是双底数列,求实数的值以及数列的前项和

(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的等边三角形,四边形为正方形,平面平面.点分别为上的点,且,点上的一点,且.

(Ⅰ)当时,求证: 平面

(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)

(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.

附:临界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四种变换方式:

向左平移个单位长度,再将每个点的横坐标缩短为原来的;

向右平移个单位长度,再将每个点的横坐标缩短为原来的;

每个点的横坐标缩短为原来的,向右平移个单位长度;

每个点的横坐标缩短为原来的,向左平移个单位长度;

其中能将的图像变换成函数的图像的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为平行四边形, 的中点.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某几何体中,四边形是边长为的正方形, 是直角梯形, 是直角, 是以为直角顶点的等腰直角三角形, .

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案