精英家教网 > 高中数学 > 题目详情

【题目】甲乙二人轮流掷一枚质地均匀的骰子,甲先掷.规定:若甲掷出1点,则由甲继续掷,否则下一次由乙掷;若乙掷出3点,则由乙继续掷,否则下一次由甲掷,两人始终按此规则进行.记第次由甲掷的概率为,则____________.

【答案】

【解析】

先求出甲掷到1点(乙掷到3点)的概率为,甲未掷到1点(乙未掷到3点)的概率为,设第次由甲掷的概率为,可得到递推公式,然后用数列的知识即可求出.

甲掷到1点(乙掷到3点)的概率为

甲未掷到1点(乙未掷到3点)的概率为

设第次由甲掷的概率为,则乙掷的概率为

第一次由甲掷,故第二次由甲掷的概率

于是,第次由甲掷的概率为

,因为

所以数列是以为首项,以为公比的等比数列(

所以,适合

从而

所以

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,则的最小值为__________ 有最小值,则实数的取值范围是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩阵乘法运算的几何意义为平面上的点在矩阵的作用下变换成点,记,且.

1)若平面上的点在矩阵的作用下变换成点,求点的坐标;

2)若平面上相异的两点在矩阵的作用下,分别变换为点,求证:若点为线段上的点,则点的作用下的点在线段上;

3)已知的顶点坐标为,且在矩阵作用下变换成,记的面积分别为,求的值,并写出一般情况(三角形形状一般化且变换矩阵一般化)下的关系(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )

A.48B.72C.84D.168

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,点E是棱上的一个动点,若平面交棱于点F,给出下列命题:

①四棱锥的体积恒为定值;

②对于棱上任意一点E,在棱上均有相应的点G,使得平面

O为底面对角线的交点,在棱上存在点H,使平面

④存在唯一的点E,使得截面四边形的周长取得最小值.

其中为真命题的是____________________.(填写所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,且.

1)证明:平面平面

2)若点的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.过原点的直线与椭圆有两个不同的交点.

1)求椭圆长半轴长;

2)求最大值;

3)若直线分别与轴交于点,求证:的面积与的面积的乘积为定值.

查看答案和解析>>

同步练习册答案