精英家教网 > 高中数学 > 题目详情

【题目】随着2022年北京冬奥会的临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放.如图是2012-2018年中国雪场滑雪人数(单位:万人)与同比增长情况统计图则下面结论中正确的是( .

A.2012-2018年,中国雪场滑雪人数逐年增加;

B.2013-2015年,中国雪场滑雪人数和同比增长率均逐年增加;

C.中国雪场2015年比2014年增加的滑雪人数和2018年比2017年增加的滑雪人数均为220万人,因此这两年的同比增长率均有提高;

D.2016-2018年,中国雪场滑雪人数的增长率约为23.4%.

【答案】AB

【解析】

根据条形图判断人数增减性,即可判断A;根据折线图判断同比增长率增减性,即可判断B; 根据折线图判断同比增长率,即可判断C;计算2016-2018年滑雪人数的增长率可判断D.

根据条形图知,2012-2018年,中国雪场滑雪人数逐年增加,所以A正确;

根据条形图知,2013-2015年,中国雪场滑雪人数逐年增加,

根据折线图知,2013-2015年,中国雪场滑雪人数同比增长率逐年增加,所以B正确;

根据条形图知,中国雪场2015年比2014年增加的滑雪人数为万人,2018年比2017年增加的滑雪人数为万人,根据折线图知,2015年比2014年同比增长率上升,但2018年比2017年同比增长率有下降,故C错误;

2016-2018年,中国雪场滑雪人数的增长率约为,故D错误;

故选:AB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取到极值为

1)求函数的单调区间;

2)若不等式上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对任意,都有.

1)求实数m的取值范围;

2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点P在直线上运动,请点Q满足,记点Q的为曲线C.

1)求曲线C的方程;

2)设,过点D的直线交曲线CAB两个不同的点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,其中.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)在平面直角坐标系中,设直线与曲线相交于两点.若点恰为线段的三等分点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线E)与圆O相交于AB两点,且.过劣弧上的动点作圆O的切线交抛物线ECD两点,分别以CD为切点作抛物线E的切线,相交于点M.

1)求抛物线E的方程;

2)求点M到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面,点分别在棱和棱上,且为棱的中点.


(Ⅰ)求证:

(Ⅱ)求二面角的正弦值;

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线

(Ⅰ)求的方程;

(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.

已知等比数列的公比,前n项和为,若_________,数列满足.

1)求数列的通项公式;

2)求数列的前n项和,并证明.

查看答案和解析>>

同步练习册答案