【题目】已知y=f(x)是偶函数,定义x≥0时,f(x)=
(1)求f(﹣2);
(2)当x<﹣3时,求f(x)的解析式;
(3)设函数y=f(x)在区间[﹣5,5]上的最大值为g(a),试求g(a)的表达式.
【答案】
(1)解:已知y=f(x)是偶函数,故f(﹣2)=f(2)=2(3﹣2)=2
(2)解:当x<﹣3时,f(x)=f(﹣x)=(﹣x﹣3)(a+x)=﹣(x+3)(a+x),
所以,当x<﹣3时,f(x)的解析式为f(x)=﹣(x+3)(a+x)
(3)解:因为f(x)是偶函数,所以它在区间[﹣5,5]上的最大值即为它在区间[0,5]上的最大值,
①当a≤3时,f(x)在 上单调递增,在 上单调递减,所以 ,
②当3<a≤7时,f(x)在 与 上单调递增,在 与 上单调递减,
所以此时只需比较 与 的大小.
(A)当3<a≤6时, ≥ ,所以
(B)当6<a≤7时, < ,所以g(a)=
③当a>7时,f(x)在 与[3,5]上单调递增,在 上单调递减,且 <f(5)=2(a﹣5),所以g(a)=f(5)=2(a﹣5),
综上所述,g(a)=
【解析】(1)已知y=f(x)是偶函数,故f(﹣2)=f(2)=2(3﹣2)=2; (2)当x<﹣3时,f(x)=f(﹣x)=(﹣x﹣3)(a+x)=﹣(x+3)(a+x),(3)因为f(x)是偶函数,所以它在区间[﹣5,5]上的最大值即为它在区间[0,5]上的最大值,在这两段上分别研究二次函数的区间上的最值即可.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数y=f(x),当x≥0时,f(x)=x2﹣2x.
(1)求当x<0时,函数y=f(x)的解析式,并在给定坐标系下,画出函数y=f(x)的图象;
(2)写出函数y=|f(x)|的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从、、、四首不同曲目中任选一首.
(1)求甲、乙两班选择不同曲目的概率;
(2)设这四个班级总共选取了首曲目,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗该疾病有效的时间为( )
A.4小时
B.
C.
D.5小时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数g(x)=3x , h(x)=9x .
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com