精英家教网 > 高中数学 > 题目详情

f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直y轴.

(Ⅰ)用a分别表示bc

(Ⅱ)(文科做)当bc取最小值时,求函数F(x)=x3f(x)的单调区间.

(理科做)当bc取最小值时,求函数F(x)=-f(x)e-x的单调区间.

答案:
解析:

  解:(Ⅰ)∵  2分

    4分

  (Ⅱ)(文科做)由(1)  5分

  当  6分

  ∴  7分

  ∴  8分

  令=0,解得  9分

  当  10分

  ∴F(x)的单调增区间为 12分

  (Ⅱ)(理科做)由(1)  5分

  当  6分

  ∴  7分

  ∴,  8分

  令=0解得x1=-2,x2=2.  9分

  当  10分

  ∴F(x)的单调减区间为 12分


练习册系列答案
相关习题

科目:高中数学 来源:志鸿系列训练必修一数学北师版 题型:013

设f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(αβ),则f(x)=0在(αβ)内的实根的个数为

[  ]

A.0

B.1

C.2

D.无法确定

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.

查看答案和解析>>

科目:高中数学 来源:设计必修五数学苏教版 苏教版 题型:044

f(x)=ax2bxc,若,问是否存在abcR,使得不等式x2f(x)≤2x2+2x对一切实数x都成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(α<β),则f(x)=0在(α,β)内的实根的个数为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=ax2bxc,当|x|≤1时,总有|f(x)|≤1,求证:|f(2)|≤7.

查看答案和解析>>

同步练习册答案