精英家教网 > 高中数学 > 题目详情

【题目】某电视台举行一个比赛类型的娱乐节目,两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得晋级”.

1)主持人从队所有选手成绩中随机抽取2个,求至少有一个为晋级的概率;

2)主持人从两队所有选手成绩中分别随机抽取2个,记抽取到晋级选手的总人数为,求的分布列及数学期望.

【答案】1;(2)分布列见解析,2.

【解析】

1)先由题意求得队第六位选手的成绩,则可得队中成绩不少于21分的有2个,再利用对立事件求概率即可;

2)由(1)可得队中所有选手成绩能“晋级”的有2,队中所有选手成绩能“晋级”的有4,的可能取值有,分别讨论求解即可得到分布列,利用公式求得期望即可

1队选手的平均分为,

队第6位选手的成绩为分,因为队的平均分比队的平均分多4分,

,得,

队中成绩不少于21分的有2个,

因为从中抽取2个至少有一个为晋级的对立事件为两人都没有晋级,

则概率

2)由(1,队中所有选手成绩能“晋级”的有2,队中所有选手成绩能“晋级”的有4,的可能取值有,

的分布列为

0

1

2

3

4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,

(1)请将下面的列联表补充完整;

患伤风感冒疾病

不患伤风感冒疾病

合计

25

20

合计

100

(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;

(3)已知在患伤风感冒疾病的名女性幼儿中,名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,的分布列以及数学期望.下面的临界值表供参考:

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面为菱形,且侧棱 其中交点.

1)求点到平面的距离;

2)在线段上,是否存在一个点,使得直线垂直?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量,两组向量均由23排列而成,记表示所有可能取值中的最小值,则下列命题中

15个不同的值;(2)若无关;(3)若,则无关;(4)若,则;(5)若,则的夹角为.正确的是(  )

A.1)(2B.2)(4C.3)(5D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型:以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以分钟为一个计算单位,上午分作为第个计算人数单位,即分作为第个计算单位,即;依次类推,把一天内从上午点到晚上分分成个计算单位(最后结果四舍五入,精确到整数).

1)试计算当天点至点这一小时内,进入园区的游客人数、离开园区的游客人数各为多少?

2)假设当日园区游客总人数达到或超过万时,园区将采取限流措施.该单位借助该数学模型知晓当天点(即)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+|x﹣a|

1)当a=1时,求函数fx)的最小值;

2)试讨论函数fx)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD

(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的最小周期为.

1)求的值及的单调递增区间;

2)将函数的图象向右平移个单位,再将图象上各点的横坐标缩短为原来的(纵坐标不变)得到函数的图象,若关于x的方程在区间上有且只有一个解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案