精英家教网 > 高中数学 > 题目详情

设直线(m为常数),圆,则

(A) 当m变化时,直线l恒过定点(-1,1);  (B) 直线l与圆C有可能无公共点

(C) 若圆C上存在关于直线l对称的两点,则必有m=0

(D) 若直线与圆C有两个不同交点M、N,则线段MN的长的最小值为

 

【答案】

D

【解析】本题考查直线与圆的知识。直线恒过定点(1,-1),并且在圆C内,故选项A、B错误;圆C上存在关于直线对称两点,则直线必须过圆心(1,0),故C错。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点P(Sn,an)在直线(2-m)x+2my-m-2=0上,其中m为常数,且m>0.
(Ⅰ)求证:{an}是等比数列,并求其通项an
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求证:{
1bn
}
是等差数列,并求bn
(Ⅲ)设数列{cn}满足cn=bnbn+1,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N+)求T的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,(m∈N*,m为常数,m≠3);
(1)求an
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1bn=
3
2
f(bn-1),(n∈N*,n≥2)
,求证:{
1
bn
}
为等差数列,并求bn
(3)设数列{cn}满足cn=bn•bn+2,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N*),求T的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为k(k≠0)的直线l过抛物线C:y2=4x的焦点F且交抛物线于A、B两点.设线段AB的中点为M.
(1)求点M的轨迹方程;
(2)若-2<k<-1时,点M到直线l':3x+4y-m=0(m为常数,m<
1
3
)的距离总不小于
1
5
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江二模)已知抛物线y2=mx(m>0,m为常数)的焦点是F(1,0),P(x0,y0)是抛物线上的动点,定点A(2,0).
(1)若x0>2,设线段AP的垂直平分线与x轴交于Q(x1,O),求x1的取值范围;
(2)是否存在垂直于x轴的定直线l,使以AP为直径的圆截l得到的弦长为定值?若存在,求其方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案