精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnxax+1aR).

1)求fx)的单调区间;

2)设gx)=lnx,若对任意的x1∈(0+∞),存在x2∈(1+∞),使得fx1)<gx2)成立,求实数a的取值范围.

【答案】1)当a≤0时,fx)单调递增区间是(0+∞);当a0时,fx)单调递增区间是(0),单调递减在区间是(+∞.2a

【解析】

1)函数求导得,然后分a≤0a0两种情况分类求解.

2)根据对任意的x1∈(0+∞),存在x2∈(1+∞),使得fx1)<gx2)成立,等价于fxmaxgxmax,然后分别求最大值求解即可.

1

a≤0时,fx)>0fx)单调递增,

a0时,在区间(0)上,fx)>0fx)单调递增,

在区间(+∞)上,fx)<0fx)单调递减.

综上:当a≤0时,fx)单调递增区间是(0+∞),

a0时,fx)单调递增区间是(0),单调递减在区间是(+∞.

2

在区间(13)上,gx)>0gx)单调递增,

在区间(3+∞)上,gx)<0gx)单调递减,

所以gxmaxg3)=ln3

因为对任意的x1∈(0+∞),存在x2∈(1+∞),使得fx1)<gx2)成立,

等价于fxmaxgxmax

由(1)知当a≤0时,fx)无最值,

a0时,fxmaxf)=﹣lna

所以﹣lnaln3

所以

解得a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数abR).

1)若fx)在点(1f1))的切线为yx+1,求fx)的单调性与极值;

2)若b=﹣1,函数有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设曲线与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa||x2|1

1)当a1时,求不等式fx≥0的解集;

2)当fx≤1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:

得分

频数

25

150

200

250

225

100

50

1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①;②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为,(为参数).

1)请写出直线的参数方程;

2)求直线与曲线交点的直角坐标.

查看答案和解析>>

同步练习册答案