精英家教网 > 高中数学 > 题目详情
2.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为$-\sqrt{3}$,则|PF|=(  )
A.$4\sqrt{3}$B.6C.8D.16

分析 先根据抛物线方程求出焦点坐标和准线方程,根据直线AF的斜率得到AF方程,与准线方程联立,解出A点坐标,因为PA垂直准线l,所以P点与A点纵坐标相同,再代入抛物线方程求P点横坐标,利用抛物线的定义就可求出|PF|长.

解答 解:∵抛物线方程为y2=8x,
∴焦点F(2,0),准线l方程为x=-2,
∵直线AF的斜率为$-\sqrt{3}$,直线AF的方程为y=$-\sqrt{3}$(x-2),
由$\left\{\begin{array}{l}{x=-2}\\{y=-\sqrt{3}(x-2)}\end{array}\right.$,可得A点坐标为(-2,4$\sqrt{3}$),
∵PA⊥l,A为垂足,
∴P点纵坐标为4$\sqrt{3}$,代入抛物线方程,得P点坐标为(6,4$\sqrt{3}$),
∴|PF|=|PA|=6-(-2)=8,
故选C.

点评 本题主要考查抛物线的几何性质,定义的应用,以及曲线交点的求法,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(ax2+x-1)ex
(1)若a<0时,讨论函数f(x)的单调性;
(2)若g(x)=e-xf(x)+lnx,过O(0,0)作y=g(x)切线l,已知切线l的斜率为-e,求证:-$\frac{2{e}^{2}+e}{2}$<a<-$\frac{e+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=sin2(x-$\frac{π}{4}$)的图象沿x轴向右平移m个单位(m>0),所得图象关于y轴对称,则m的最小值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的公差为d,d≠0,若{an}的前10项之和大于其前21项之和,则(  )
A.d<0B.d>0C.a16<0D.a16>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由直线y=x+1上的点向圆C:x2+y2-6x+8=0引切线,则切线长的最小值为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=sinωx(cosωx-\sqrt{3}sinωx)+\frac{{\sqrt{3}}}{2}(ω>0)$的最小正周期为$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.求二面角P-CD-B余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点P是边长为2的正三角形ABC的三边上的动点,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的取值范围为[-$\frac{9}{8}$,2].

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:选择题

下列函数在其定义域内既是奇函数又是增函数的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案