【题目】在三棱柱中,平面,,点、分别在棱、上,且,,,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)要证平面,只需证垂直于该面中的两条相交直线即可,通过三角形的相似,和线面垂直可证得,,从而可证得线面垂直;
(2) 要求出直线与平面所成角的正弦值,关键在于需求出点到平面的距离,运用三棱锥的等积法,可求得点到平面的距离,从而求得直线与平面所成角的正弦值.
(1)证明:如图, ∵平面,平面,∴,
又∵,∴,且,平面,平面,∴平面,
又∵点、分别在棱、上,且,,,∴,
∴平面,又∵平面,∴,
在矩形中,,∴,∴,
且,平面,平面,∴平面,
所以平面;
(2)设点到在平面的距离为,则有,而由(1)得平面,∴,而,,
由(1)可得平面,∴点到平面的距离为的长,
∴,而,
设直线与平面所成角为,则,
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于项数为m(且)的有穷正整数数列,记,即为中的最小值,设由组成的数列称为的“新型数列”.
(1)若数列为2019,2020,2019,2018,2017,请写出的“新型数列”的所有项;
(2)若数列满足,且其对应的“新型数列”项数,求的所有项的和;
(3)若数列的各项互不相等且所有项的和等于所有项的积,求符合条件的及其对应的“新型数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,为其前项的和,满足.
(1)求数列的通项公式;
(2)设数列的前项和为,数列的前项和为,求证:当,时;
(3)已知当,且时有,其中,求满足的所有的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形的两个顶点、及的中点处,,,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与、等距离的一点处,建造一个污水处理厂,并铺设三条排污管道、、.设∠BAO=x(弧度),排污管道的总长度为.
(1)将表示为的函数;
(2)试确定点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E:的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆于C、D两点.
(1)求椭圆的方程;
(2)直线l经过点,设点,且的面积为,求k的值;
(3)若直线l过点,设直线,的斜率分别为,,且,,成等差数列,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com