精英家教网 > 高中数学 > 题目详情

【题目】如图所示,某海滨城市位于海岸处,在城市的南偏西20°方向有一个海面观测站,现测得与处相距31海里的处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市直线航行,30分钟后到达处,此时测得间的距离为21海里.

)求的值;

)试问这艘游轮再向前航行多少分钟方可到达城市

【答案】;((分钟).

【解析】

(Ⅰ)由题意可先求得,中应用余弦定理求得,再由同角三角函数关系式即可求得的值;

(Ⅱ)由题意可得的度数,进而由可利用正弦的差角公式求得.结合正弦定理求得,即可求得游轮到达城市时所需时间.

(Ⅰ)由已知,.

,据余弦定理,.

所以由同角三角函数关系式可得.

(Ⅱ)由已知可得,,

所以.

,根据正弦定理,,

,.

所以(分钟).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知方程恰有四个不同的实数根,当函数时,实数K的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。

1)如果X=8,求乙组同学植树棵数的平均数和方差

2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=cos,求ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题,其中正确命题的个数______.

①线段在平面内,则直线不在平面内;②两平面有一个公共点,则一定有无数个公共点;③三条平行直线共面;④空间三点确定一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )

A. 关于直线对称 B. 关于直线对称

C. 关于点对称 D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中, .

(Ⅰ)求的值;

(Ⅱ)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆..

(1)求动圆圆心的轨迹方程;

(2)若上存在两个点,(1)中曲线上有两个点,并且三点共线,三点共线,,求四边形的面积的最小值.

查看答案和解析>>

同步练习册答案