【题目】设函数,已知在有且仅有3个零点,下列结论正确的是( )
A.在上存在,,满足
B.在有且仅有1个最小值点
C.在单调递增
D.的取值范围是
【答案】AD
【解析】
对A选项,易知最小正周期;对D,结合伸缩变换先求在轴右侧的前4个零点,进而得到在轴右侧的前4个零点,再列出不等式组,即可得的范围;对B,可以把第三个零点与第四个零点的中点坐标求出来,利用选项D中的范围,可得该中点坐标可能在内;对C,根据选项D中的范围,可得的范围不在区间内.
解: 对A,在有且仅有3个零点,则函数的最小正周期,
在上存在,,满足,
所以可以成立,故A正确;
对D,函数在轴右侧的前4个零点分别是:,
则函数在轴右侧的前4个零点分别是:,
因为函数在有且仅有3个零点,
所以,故D正确.
对B,由D选项中前4个零点分别是:,
得,
此时可使函数取得最大值,
因为,所以,
所以在可能存在2个最小值点,故B错误;
对C,由D选项中,所以,
区间不是的子区间,故C错误.
故选: AD
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数与的图象上存在关于原点对称的点,求实数的取值范围;
(2)设,已知在上存在两个极值点,,且,求证:(其中为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,,侧面为等边三角形且垂直于底面,是的中点.
(1)在棱上取一点使直线∥平面并证明;
(2)在(1)的条件下,当棱上存在一点,使得直线与底面所成角为时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为,(为参数),将曲线经过伸缩变换后得到曲线,在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,求点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为2的等边三角形中,点分别是边上的点,满足 且,(),将沿直线折到的位置.在翻折过程中,下列结论不成立的是( )
A.在边上存在点,使得在翻折过程中,满足平面
B.存在,使得在翻折过程中的某个位置,满足平面平面
C.若,当二面角为直二面角时,
D.在翻折过程中,四棱锥体积的最大值记为,的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,平面五边形中,,,,,是边长为2的正三角形.现将沿折起,得到四棱锥(如图2),且.
(1)求证:平面平面;
(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则( )
A.最少需要16次调动,有2种可行方案
B.最少需要15次调动,有1种可行方案
C.最少需要16次调动,有1种可行方案
D.最少需要15次调动,有2种可行方案
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com