精英家教网 > 高中数学 > 题目详情

【题目】设函数,已知有且仅有3个零点,下列结论正确的是(

A.上存在,,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

【答案】AD

【解析】

A选项,易知最小正周期;D,结合伸缩变换先求轴右侧的前4个零点,进而得到轴右侧的前4个零点,再列出不等式组,即可得的范围;B,可以把第三个零点与第四个零点的中点坐标求出来,利用选项D的范围,可得该中点坐标可能在;C,根据选项D的范围,可得的范围不在区间.

: A,有且仅有3个零点,则函数的最小正周期,

上存在,,满足,

所以可以成立,A正确;

D,函数轴右侧的前4个零点分别是:,

则函数轴右侧的前4个零点分别是:,

因为函数有且仅有3个零点,

所以,D正确.

B,D选项中前4个零点分别是:,

,

此时可使函数取得最大值,

因为,所以,

所以可能存在2个最小值点,B错误;

C,D选项中,所以,

区间不是的子区间,C错误.

故选: AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象上存在关于原点对称的点,求实数的取值范围;

2)设,已知上存在两个极值点,且,求证:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,,侧面为等边三角形且垂直于底面的中点.

(1)在棱上取一点使直线∥平面并证明;

(2)在(1)的条件下,当棱上存在一点,使得直线与底面所成角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,(为参数),将曲线经过伸缩变换后得到曲线,在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;

2)已知点是曲线上的任意一点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的等边三角形中,点分别是边上的点,满足,(),将沿直线折到的位置.在翻折过程中,下列结论不成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,二面角为直二面角,为线段的中点,.

1)求证:平面平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,平面五边形中,是边长为2的正三角形.现将沿折起,得到四棱锥(如图2),且.

1)求证:平面平面

2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为配合“2019双十二促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40455461,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则(

A.最少需要16次调动,有2种可行方案

B.最少需要15次调动,有1种可行方案

C.最少需要16次调动,有1种可行方案

D.最少需要15次调动,有2种可行方案

查看答案和解析>>

同步练习册答案