精英家教网 > 高中数学 > 题目详情
(2013•闸北区二模)在xOy平面上有一系列的点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对于所有正整数n,点Pn位于函数y=x2(x≥0)的图象上,以点Pn为圆心的⊙Pn与x轴相切,且⊙Pn与⊙Pn+1又彼此外切,若x1=1,且xn+1<xn.则
lim
n→∞
nxn
=(  )
分析:由圆Pn与P(n+1)相切,且P(n+1)与x轴相切可知Rn=yn,R(n+1)=y(n+1),且两圆心间的距离就等于两半径之和进而得到
(xn-xn+1)2+(yn-yn+1)2
=整理可得,
1
xn+1
-
1
xn
=2,结合等差数列的通项公式可求xn,进而可求极限
解答:解:∵圆Pn与P(n+1)相切,且P(n+1)与x轴相切,
所以,Rn=yn,R(n+1)=y(n+1),且两圆心间的距离就等于两半径之和,
(xn-xn+1)2+(yn-yn+1)2
=yn+yn+1
整理可得,
1
xn+1
-
1
xn
=2
1
xn
=1+2(n-1)
=2n-1
nxn=
n
2n-1

lim
n→∞
nxn=
lim
n→∞
n
2n-1
=
1
2

故选C
点评:本题主要考查了数列在实际中的应用,解题的关键是寻求相切的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•闸北区二模)设为虚数单位,集合A={1,-1,i,-i},集合B={i10,1-i4,(1+i)(1-i),
1+i1-i
}
,则A∩B=
{-1,i}
{-1,i}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)在平面直角坐标系xOy中,以向量
a
=(a1,a2),
b
=(b1,b2)为邻边的平行四边形的面积为
|a1b2-b1a2|
|a1b2-b1a2|

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)(1+2x)3(1-x)4展开式中x6的系数为
-20
-20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)过原点且与向量
n
=(cos(-
π
6
),sin(-
π
6
))
垂直的直线被圆x2+y2-4y=0所截得的弦长为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)设0<θ<
π
2
,a1=2cosθ,an+1=
2+an
,则数列{an}的通项公式an=
2cos
θ
2n-1
2cos
θ
2n-1

查看答案和解析>>

同步练习册答案