精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则它的体积为(  )
A、
3
2
B、
1
2
C、
3
2
D、
3
2
+1
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为四棱锥.
解答: 解:该几何体为四棱锥.
其底面为梯形,
上底为1,下底为2,高为1;
体高为1;
故V=
1
3
×
1
2
×(1+2)×1×1=
1
2

故选B.
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=log2(2x-x2)的单调递增区间是
 
,单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),期中常数ω>0.
(1)若ω=2,将函数y=f(x)的图象向左平移
π
6
个单位,得到的函数y=g(x)的图象,求g(x);
(2)若y=f(x)在[-
π
4
3
]上单调递增,求ω的取值范围;
(3)对(1)中个g(x),区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体O-ABC中,点M在OA上,且OM=2MA,N为BC的中点,若
OG
=
1
3
OA
+
x
4
OB
+
x
4
OC
,则使G与M,N共线的x的值为(  )
A、1
B、2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的左右焦点为F1,F2,其中一条渐近线为y=
3
x,点A在双曲线C上,若|F1A|=2|F2A|,则cos∠AF2F1=(  )
A、
1
4
B、
1
3
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对某电子元件进行寿命追踪调查,情况如下.
寿命/h100~200200~300300~400400~500500~600
个数2030804030
(1)完成下列频率分布表;
(2)在平面直角坐标系中画出频率分布直方图;
(3)估计元件寿命在100~400h以内的在总体中占的比例;
(4)估计电子元件寿命在400h以上的在总体中占的比例.
解:(1)完成频率分布表
分组频数频率
100~200
200~300
300~400
400~500
500~600
合计
(2)画出频率分布直方图

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求值f(
π
3
);
(2)求函数f(x)的最小正周期及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ex-kx-1(k∈R)的零点,下列判断中正确的个数为(  )
①对于?k∈R,函数f(x)总有零点;
②对于?k>1,函数f(x)总有两个零点;
③?k∈(0,1),使得函数f(x)有且仅有一个零点;
④k∈(-∞,0)是函数f(x)有且仅有一个零点的充分不必要条件.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+xlog26+log23=0的两根为α,β,则(
1
4
)
α
(
1
4
)
β
=(  )
A、
1
36
B、36
C、-6
D、6

查看答案和解析>>

同步练习册答案