5£®ÒÑÖªÔ²C1£ºx2+y2=r2ÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓÚxÖáµÄ½»µãÖغϣ¬ÇÒÍÖÔ²C2µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Ô²C1Éϵĵ㵽ֱÏßl£ºx=-2$\sqrt{2}$µÄ×î¶Ì¾àÀëΪ2$\sqrt{2}$-2£®
£¨1£©ÇóÍÖÔ²C2µÄ·½³Ì£»
£¨2£©Èçͼ¹ýÖ±Ïß1ÉϵĶ¯µãT×÷Ô²C1µÄÁ½ÌõÇÐÏߣ¬ÉèÇеã·Ö±ðΪA¡¢B£¬ÈôÖ±ÏßABÓëÍÖÔ²C2½»ÓÚ²»Í¬µÄÁ½µãC¡¢D£¬Çó¡÷OCDÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍÖ±ÏߺÍÔ²µÄλÖùØϵ£¬ÒÔ¼°a£¬b£¬cµÄ¹Øϵ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©Ô²C1µÄ·½³ÌΪx2+y2=4£¬ÉèÖ±Ïßx=-2$\sqrt{2}$ÉϵĶ¯µãTµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬t£©£¬£¨t¡ÊR£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖ±ÏßATµÄ·½³ÌΪx1x+y1y=4£¬Ö±ÏßBTµÄ·½³ÌΪx2x+y2y=4£¬Ö±ÏßABµÄ·½³ÌΪ-2$\sqrt{2}$x+ty=2£¬ÓÉ´ËÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃOµ½Ö±ÏßABµÄ¾àÀ룬ÔÙÓÉÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬ÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬r=a£¬
ÇÒ2$\sqrt{2}$-a=2$\sqrt{2}$-2£¬a2-b2=c2£¬
½âµÃa=2£¬b=c=$\sqrt{2}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©Ô²C1µÄ·½³ÌΪx2+y2=4£¬
ÉèÖ±Ïßx=-2$\sqrt{2}$ÉϵĶ¯µãTµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬t£©£¬£¨t¡ÊR£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖ±ÏßATµÄ·½³ÌΪx1x+y1y=4£¬
Ö±ÏßBTµÄ·½³ÌΪx2x+y2y=4£¬
ÓÖT£¨-2$\sqrt{2}$£¬t£©ÔÚÖ±ÏßATºÍBTÉÏ£¬¼´ $\left\{\begin{array}{l}{-2\sqrt{2}{x}_{1}+t{y}_{1}=4}\\{-2\sqrt{2}{x}_{2}+t{y}_{2}=4}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ·½³ÌΪ-2$\sqrt{2}$x+ty=4£¬
ÓÉÔ­µãOµ½Ö±ÏßABµÄ¾àÀëΪd=$\frac{4}{\sqrt{8+{t}^{2}}}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{-2\sqrt{2}x+ty=4}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$£¬ÏûÈ¥x£¬µÃ£¨t2+16£©y2-8ty-16=0£¬
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
Ôòy3+y4=$\frac{8t}{{t}^{2}+16}$£¬y3y4=-$\frac{16}{{t}^{2}+16}$£¬
´Ó¶ø|CD|=$\sqrt{1+\frac{{t}^{2}}{8}}$|y3-y4|=$\frac{1}{4}$$\sqrt{16+2{t}^{2}}$•$\sqrt{£¨\frac{8t}{16+{t}^{2}}£©^{2}+\frac{64}{{t}^{2}+16}}$=$\frac{4£¨8+{t}^{2}£©}{16+{t}^{2}}$£¬
Ôò¡÷OCDÃæ»ýΪS=$\frac{1}{2}$d•|CD|=$\frac{1}{2}$•$\frac{4}{\sqrt{8+{t}^{2}}}$•$\frac{4£¨8+{t}^{2}£©}{16+{t}^{2}}$=$\frac{8\sqrt{8+{t}^{2}}}{16+{t}^{2}}$£¬
Áî$\sqrt{8+{t}^{2}}$=m£¨m¡Ý2$\sqrt{2}$£©£¬¼´ÓÐS=$\frac{8m}{8+{m}^{2}}$=$\frac{8}{m+\frac{8}{m}}$¡Ü$\frac{8}{2\sqrt{m•\frac{8}{m}}}$=$\sqrt{2}$£®
µ±ÇÒ½öµ±m=$\frac{8}{m}$£¬¿ÉµÃm=2$\sqrt{2}$£¬¡÷OCDµÄÃæ»ýÈ¡µÃ×î´óÖµ$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖʺÍÖ±ÏߺÍÔ²µÄλÖùØϵ£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°»ù±¾²»µÈʽÇóµÃ×îÖµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨a-\frac{1}{2}£©x-2a+1£¬x¡Ý1}\\{{a}^{x}£¬x£¼1}\end{array}\right.$£¬ÔÚRÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª[$\frac{1}{4}$£¬$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôM={y|y=2x-1}£¬P={x|y=$\sqrt{x-1}$}£¬ÔòM¡ÉP=£¨¡¡¡¡£©
A£®{y|y£¾1}B£®{y|y¡Ý1}C£®{y|y£¾0}D£®{y|y¡Ý0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®f£¨x£©=lnx+$\frac{1}{x}$+a2£¬g£¨x£©=-2x3-3x2+12x-a£¬x£¾0ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄ·¶Î§ÊÇa£¾2»òa£¼-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ò»¸öËÄÀâ׶µÄÈýÊÓͼºÍÖ±¹ÛͼÈçͼËùʾ£¬EΪ²àÀâPDµÄÖе㣮
£¨1£©ÇóÖ¤£ºPB¡ÎƽÃæAEC£»
£¨2£©ÇóÈýÀâ׶C-PABµÄÌå»ý£®
£¨3£©ÈôFΪ²àÀâPAÉÏÒ»µã£¬ÇÒ$\frac{PF}{FA}$=¦Ë£¬Ôò¦ËΪºÎֵʱ£¬PA¡ÍƽÃæBDF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®£¨1£©ÒÑÖªcos£¨¦Á-$\frac{¦Â}{2}$£©=-$\frac{1}{9}$£¬sin£¨$\frac{¦Á}{2}$-¦Â£©=$\frac{2}{3}$£¬ÇÒ$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬0$£¼¦Â£¼\frac{¦Ð}{2}$£¬Çócos$\frac{¦Á+¦Â}{2}$Öµ£®
£¨2£©ÒÑÖªtan¦Á=2£¬Çó$\frac{cos£¨¦Ð-¦Á£©cos£¨\frac{¦Ð}{2}+¦Á£©sin£¨¦Á-\frac{3¦Ð}{2}£©}{sin£¨3¦Ð+¦Á£©sin£¨¦Á-¦Ð£©cos£¨¦Ð+¦Á£©}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐËĸöÃüÌâÖУ®ÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ù´æÔÚÕâÑùµÄ½Ç¦ÁºÍ¦Â£¬Ê¹µÃcos£¨¦Á+¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â
¢Ú²»´æÔÚÎÞÇî¶à¸ö½Ç¦ÁºÍ¦Â£¬Ê¹cos£¨¦Á+¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â
¢Û¶ÔÓÚÈÎÒâµÄ½Ç¦ÁºÍ¦Â£¬cos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â
¢Ü²»´æÔÚÕâÑùµÄ½Ç¦ÁºÍ¦Â£¬cos£¨¦Á+¦Â£©¡Ùcos¦Ácos¦Â-sin¦Ásin¦Â
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªm=log25£¬Çó2m-mlg2-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈôÊýÁÐ{an}µÄÇ°nÏîºÍSnÂú×ã2Sn=3an-1£¨n¡ÊN*£©£¬µÈ²îÊýÁÐ{bn}Âú×ãb1=3a1£¬b3=S2+3
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Éècn=$\frac{n+2}{{b}_{n}•{b}_{n+1}•{a}_{n}}$£¨n¡ÊN*£©£¬ÇÒ{cn}µÄÇ°nÏîºÍΪTn£¬ÇóÖ¤£ºTn$£¼\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸