精英家教网 > 高中数学 > 题目详情
17.设有两个命题,命题P:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域中是增函数,
(1)若p∧q为真命题时,求a的取值范围;
(2)若p∨q为真命题时,求a的取值范围.

分析 由题意可得p,q真时,a的范围,分别由p真q假,p假q真由集合的运算可得.

解答 解:∵命题p:不等式x2-(a-1)x+1≤0的解集是∅,
∴△=(a-1)2-4<0,解得-1<a<3,
∵命题q:函数f(x)=(a+1)x在定义域内是增函数.
∴a+1>1,解得a>0
(1)若p∧q为真命题时,则$\left\{\begin{array}{l}{-1<a<3}\\{a>0}\end{array}\right.$,解得:0<a<3;
(2)若p∨q为真命题时,则-1<a<3或a>0,即:a>-1.

点评 本题考查复合命题的真假,涉及一元二次不等式的解法和指数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin2x+cos2x,将f(x)的图象上各点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再将所得的图象向右平移$\frac{π}{4}$个单位,得到的函数y=g(x)的图象.则函数y=g(x)的图象的对称中心不可能是(  )
A.(-$\frac{3π}{16}$,0)B.($\frac{3π}{16}$,0)C.($\frac{7π}{16}$,0)D.($\frac{15π}{16}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知R是实数集,集合P={m∈R|mx2+4mx-4<0对?x∈R都成立},Q={x|y=ln(x2+2x)},则(∁RP)∩(∁RQ)=(  )
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}(a-3)x+2,x≤1\\{x^{1-a}},x>1\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A.(1,3)B.(1,2]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=$\left\{\begin{array}{l}{1,(x∈Q)}\\{0,(x∈{∁}_{R}Q)}\end{array}\right.$,则f(e)=(  )(其中e是自然对数的底数)
A.0B.1C.0或1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足:a5=11,a2+a6=18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等差数列{an}中,a3=2,a11=2a5
(I)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{n{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.记关于x的不等式$\frac{x-a}{x+1}$<0的解集为P,不等式|x-1|≤1的解集为Q.
(1)若a=2,求P;
(2)若x∈Q是x∈P的充分条件,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,2,4,5},集合B=(1,3,5},则A∪B=(  )
A.{1,5}B.{1,2,3,4,5}C.{2,4}D.

查看答案和解析>>

同步练习册答案