精英家教网 > 高中数学 > 题目详情
4.已知椭圆$\frac{{x}^{2}}{4}$+y2=1上任意一点P及点A(0,2),则|PA|的最大值为$\frac{2\sqrt{21}}{3}$.

分析 设椭圆$\frac{{x}^{2}}{4}$+y2=1上一点P的坐标为(2cosα,sinα),(0≤α<2π),运用两点的距离公式,结合同角的平方关系和二次函数的最值的求法,即可得到所求最大值.

解答 解:设椭圆$\frac{{x}^{2}}{4}$+y2=1上一点P的坐标为
(2cosα,sinα),(0≤α<2π),
即有|PA|=$\sqrt{(2cosα)^{2}+(sinα-2)^{2}}$
=$\sqrt{4co{s}^{2}α+si{n}^{2}α-4sinα+4}$
=$\sqrt{3co{s}^{2}α-4sinα+5}$=$\sqrt{-3si{n}^{2}α-4sinα+8}$
=$\sqrt{-3(sinα+\frac{2}{3})^{2}+\frac{28}{3}}$,
当sinα=-$\frac{2}{3}$时,|PA|取得最大值,且为$\frac{2\sqrt{21}}{3}$.
故答案为:$\frac{2\sqrt{21}}{3}$.

点评 本题考查椭圆的参数方程的运用,考查三角函数的恒等变换以及二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设集合M={0,1,2,3},P={2,3,4},那么“x∈M或x∈P”是“x∈M∩P”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆C:x2+y2-14x+10y+65=0的面积等于(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-x,y-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,若x,y为正数,则$\frac{2}{3x}$+$\frac{4}{y}$的最小值是(  )
A.$\frac{5}{3}$B.$\frac{8}{3}$C.9D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设有两个命题,命题p:关于x的不等式(x-2)$\sqrt{{x^2}-3x+2}$≥0的解集为{x|x≥2},命题q:若函数y=kx2-kx-1的值恒小于0,则-4<k<0,那么(  )
A.“¬q”为假命题B.“p且¬q”为真命题C.“¬p”为真命题D.“¬p或q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-10|+|x-20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证aabb>abba

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设抛物线y2=4x的焦点为F,A,B两点在抛物线上,且A,B,F三点共线,过AB的中点M作y轴的垂线与抛物线在第一象限内交于点P,若|PF|=$\frac{3}{2}$,则M点的横坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)设g(x)=f(x)+1,h(x)=lnx
①判断g(x)的单调性并说明理由;
②若g(s)=h(t),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.

查看答案和解析>>

同步练习册答案